• Title/Summary/Keyword: Reperfusion injury and Korean ginseng

Search Result 19, Processing Time 0.022 seconds

Protective Roles of Ginseng Saponin in Cardiac Ischemia and Reperfusion Injury

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.283-293
    • /
    • 2009
  • Ginsenosides, one of the most well-known traditional herbal medicines, are used frequently in Korea for the treatment of cardiovascular symptoms. The effects of ginseng saponin on ischemia-induced isolated rat heart were investigated through analyses of hemodynamic changes including perfusion pressure, aortic flow, coronary flow, and cardiac output. Isolated rat hearts were perfused and then subjected to 30 min of global ischemia followed by 60 min of reperfusion with modified Kreb's Henseleit solution. Myocardial contractile function was continuously recorded. Ginseng saponin administered before inducing ischemia significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output. The ginseng saponin administered group significantly recovered all of the hemodynamic parameters, except heart rate, after ischemia-reperfusion (I/R) compared with ischemia control. The intracellular calcium ($[Ca^{2+}]_i$) content in rat neonatal cardiomyocytes was quantitatively determined. Administration of ginseng saponin significantly prevented $[Ca^{2+}]_i$ increase that had been induced by simulated I/R in vitro (p<0.01) in a dose-dependent manner, suggesting that the cardioprotection of ginseng saponin is mediated by the inhibition of $[Ca^{2+}]_i$ increase. Overall, we found that the administration of ginseng saponin has cardioprotective effects on the isolated rat heart after I/R injury. These results indicate that ginseng saponin has distinct cardioprotective effects in an I/R-induced rat heart.

Protective Effects of a Ginseng Component, Malto1(2-Mlethyl-3-Hydrox)-4-Pyrone) against Tissue Damages Induced By Oxygen Radicals (활성산소에 의한 조직손상에 미치는 인삼성분의 보호효과)

  • Jae-Gook Shin;Jon
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.187-190
    • /
    • 1990
  • Maltol(2-methyl-3-hydroxy-r-pyrone), a component known to be present in Korean Ginseng root showed an antioxidant action but its potency as an antioxidant was low: about 1150th that of other antioxidants such as pphenylenediamine, BHA and BHT. However, maltol was able to protect the oxidation damages in biological systems such as adriamycin-induced membrane damage in isolated cardiomyocytes, paraquat-induced toxicities in isolated hepatocytes and reperfusion injury in isolated hearts. The antioxidant action of maltol was also shown to be effective in vivo. The antioxidant action of this compound was probably due to the removal of hydroxyl radicals. In view of the roles of oxygen radical in various pathological proceises, Korean Ginseng root which contains several antioxidants including maltol is expected to have beneficial effects on the oxygen radical-involved processes.

  • PDF

Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

  • Ren, Kaixi;Jin, Chao;Ma, Pengfei;Ren, Qinyou;Jia, Zhansheng;Zhu, Daocheng
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Background: Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods: To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10-100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with $CD11b^+$, $iNOS^+$/interleukin-12/tumor necrosis factor-${\alpha}$ labeling. For the in vitro study, GSRd ($10-100{\mu}g/mL$) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results: In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin-eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-${\alpha}$. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion: These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization.

Protective Effects of a Ginseng Component, M altol(2- M ethyl-3- Hydroxy-4- Pyrone) against Tissue Damages Induced By Oxygen Radicals

  • Jae-Gook Shin;Jon
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.45-48
    • /
    • 1990
  • Maltol(2-methyl-3-hydroxy-r-pyrone), a component known to be present in Korean Ginseng root showed an antioxidant action but its potency as an antioxidant was low; about 1150th that of other antioxidants such as p-phenylenediamine , BHA and BHT. However, maltol was able to protect the oxidation adamants in biological systems such as adriamycin-induced membrane damage in isolated cardiomyocytes, parquet-induced toxicities in isolated hepatocytes and repercussion injury in isolated hearts. The antioxidant action of maltol was also shown to be effective in vivo. The antioxidant action of this compound was probably due to the removal of hydroxyl radicals. In view of the roles of oxygen radical in various pathological processes, Korean Ginseng root, which contains several antioxidants including maltol, is expected to have beneficial efforts on the oxygen radical-involved processes. Keywords Maltol, Oxygen free radicals, Lipid preoccupation, Repercussion injury and Korean ginseng

  • PDF

Korean Red Ginseng Induced Cardioprotection against Myocardial Ischemia in Guinea Pig

  • Lim, Kyu Hee;Kang, Chang-Won;Choi, Jin-Yong;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2013
  • This study was designed to evaluate the protective effect of Korean red ginseng (KRG) against ischemia/reperfusion (I/R) injury in isolated guinea pig heart. KRG has been shown to possess various ginsenosides, which are the major components of Panax ginseng. These components are known naturally occurring compounds with beneficial effects and free radical scavenging activity. The heart was induced to ischemia for 60 min, followed by 120 min reperfusion. The hearts were randomly allocated into five groups (n=8 for each group): normal control (N/C), KRG control, I/R control, 250 mg/kg KRG group and 500 mg/kg KRG group. KRG significantly increased hemodynamics parameters such as aortic flow, coronary flow and cardiac output. Moreover, KRG significantly increased left ventricular systolic pressure (LVSP), the maximal rate of contraction (+dP/$dt_{max}$) and maximal rate of relaxation (-dP/$dt_{max}$). Also, treatment of KRG ameliorated electrocardiographic index such as the QRS, QT and RR intervals. Moreover, KRG significantly suppressed the lactate dehydrogenase, creatine kinase-MB fraction and cardiac troponin I and ameliorated the oxidative stress markers such as malondialdehyde and glutathione. KRG was standardized through ultra performance liquid chromatograph analysis for its major ginsenosides. Taken together, KRG has been shown to prevent cardiac injury by normalizing the biochemical and oxidative stress.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.

Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties

  • Aravinthan, Adithan;Kim, Jong Han;Antonisamy, Paulrayer;Kang, Chang-Won;Choi, Jonghee;Kim, Nam Soo;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.206-212
    • /
    • 2015
  • Background: Ginseng total saponin (GTS) contains various ginsenosides. These ginsenosides are widely used for treating cardiovascular diseases in Asian communities. The aim of this study was to study the effects of GTS on cardiac injury after global ischemia and reperfusion (I/R) in isolated guinea pig hearts. Methods: Animals were subjected to normothermic ischemia for 60 minutes, followed by 120 minutes of reperfusion. GTS significantly increased aortic flow, coronary flow, and cardiac output. Moreover, GTS significantly increased left ventricular systolic pressure and the maximal rate of contraction ($+dP/dt_{max}$) and relaxation ($-dP/dt_{max}$). In addition, GTS has been shown to ameliorate electrocardiographic changes such as the QRS complex, QT interval, and RR interval. Results: GTS significantly suppressed the biochemical parameters (i.e., lactate dehydrogenase, creatine kinase-MB fraction, and cardiac troponin I levels) and normalized the oxidative stress markers (i.e., malondialdehyde, glutathione, and nitrite). In addition, GTS also markedly inhibits the expression of interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, and nuclear factor-${\kappa}B$, and improves the expression of IL-10 in cardiac tissue. Conclusion: These data indicate that GTS mitigates myocardial damage by modulating the biochemical and oxidative stress related to cardiac I/R injury.

Myocardial Protection of Contractile Function After Global Ischemia by Compound K in the Isolated Heart

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.268-277
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of cardiovascular symptoms in South Korea. The anti-ischemic effects of compound K (CK), a metabolite of ginsenoside Rb1, on ischemia-induced isolated rat hearts were investigated through the analyses of the changes in the hemodynamics (blood pressure, aortic flow, coronary flow, and cardiac output) and the measurement of the infarct region. The subjects in this study were divided into four groups: the normal control, the CK-alone group, the ischemia-induced group without any treatment, and the ischemia-induced group treated with CK. No significant differences in perfusion pressure, aortic flow, coronary flow, and cardiac output were found between the groups before ischemia was induced. The oxygen and buffer supply was stopped for 30 min to induce ischemia 60 min after reperfusion in the isolated rat hearts, and the CK was administered 5 min before ischemia induction. The CK treatment significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, the hemodynamics (except for the heart rate) of the group treated with CK significantly recovered 60 min after reperfusion, unlike in the control group. CK significantly limited the infarct. These results suggest that CK treatment has distinct anti-ischemic effects in an exvivo model of an ischemia-reperfusion-induced rat heart.

Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach

  • Lim, Kyu Hee;Lim, Dae-Jun;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.283-292
    • /
    • 2013
  • Ginsenosides are divided into two groups based on the types of the panaxadiol group (e.g., ginsenoside-Rb1 and -Rc) and the panaxatriol group (e.g., ginsenoside-Rg1 and -Re). Among them, ginsenoside-Re (G-Re) is one of the compounds with the highest content in Panax ginseng and is responsible for pharmacological effects. However, it is not yet well reported if G-Re increases the hemodynamics functions on ischemia (30 min)/reperfusion (120 min) (I/R) induction. Therefore, in the present study, we investigated whether treatment of G-Re facilitated the recovery of hemodynamic parameters (heart rate, perfusion pressure, aortic flow, coronary flow, and cardiac output) and left ventricular developed pressure (${\pm}dp/dt_{max}$). This research is designed to study the effects of G-Re by studying electrocardiographic changes such as QRS interval, QT interval and R-R interval, and inflammatory marker such as tissue necrosis factor-${\alpha}$ (TNF-${\alpha}$) in heart tissue in I/R-induced heart. From the results, I/R induction gave a significant increase in QRS interval, QT interval and R-R interval, but showed decrease in all hemodynamic parameters. I/R induction resulted in increased TNF-${\alpha}$ level. Treatment of G-Re at 30 and $100{\mu}M$ doses before I/R induction significantly prevented the decrease in hemodynamic parameters, ameliorated the electrocardiographic abnormality, and inhibited TNF-${\alpha}$ level. In this study, G-Re at $100{\mu}M$ dose exerted more beneficial effects on cardiac function and preservation of myocardium in I/R injury than $30{\mu}M$. Collectively, these results indicate that G-Re has distinct cardioprotectective effects in I/R induced rat heart.

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.