• Title/Summary/Keyword: Repeated restraint stress

Search Result 15, Processing Time 0.017 seconds

Bupleurum falcatum Prevents Depression and Anxiety-Like Behaviors in Rats Exposed to Repeated Restraint Stress

  • Lee, Bom-Bi;Yun, Hye-Yeon;Shim, In-Sop;Lee, Hye-Jung;Hahm, Dae-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.422-430
    • /
    • 2012
  • Previous studies have demonstrated that repeated restraint stress in rodents produces increases in depression and anxiety-like behaviors and alters the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. The current study focused on the impact of Bupleurum falcatum (BF) extract administration on repeated restraint stress-induced behavioral responses using the forced swimming test (FST) and elevated plus maze (EPM) test. Immunohistochemical examinations of tyrosine hydroxylase (TH) expression in rat brain were also conducted. Male rats received daily doses of 20, 50, or 100 mg/kg (i.p.) BF extract for 15 days, 30 min prior to restraint stress (4 h/day). Hypothalamic-pituitary-adrenal axis activation in response to repeated restraint stress was confirmed base on serum corticosterone levels and CRF expression in the hypothalamus. Animals that were pre-treated with BF extract displayed significantly reduced immobility in the FST and increased open-arm exploration in the EPM test in comparison with controls. BF also blocked the increase in TH expression in the locus coeruleus of treated rats that experienced restraint stress. Together, these results demonstrate that BF extract administration prior to restraint stress significantly reduces depression and anxiety-like behaviors, possibly through central adrenergic mechanisms, and they suggest a role for BF extract in the treatment of depression and anxiety disorders.

Chronic Administration of Baicalein Decreases Depression-Like Behavior Induced by Repeated Restraint Stress in Rats

  • Lee, Bombi;Sur, Bongjun;Park, Jinhee;Kim, Sung-Hun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.393-403
    • /
    • 2013
  • Baicalein (BA), a plant-derived active flavonoid present in the root of Scutellaria baicalensis, has been widely used for the treatment of stress-related neuropsychiatric disorders including depression. Previous studies have demonstrated that repeated restraint stress disrupts the activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depression. The behavioral and neurochemical basis of the BA effect on depression remain unclear. The present study used the forced swimming test (FST) and changes in brain neurotransmitter levels to confirm the impact of BA on repeated restraint stress-induced behavioral and neurochemical changes in rats. Male rats received 10, 20, or 40 mg/kg BA (i.p.) 30 min prior to daily exposure to repeated restraint stress (2 h/day) for 14 days. Activation of the HPA axis in response to repeated restraint stress was confirmed by measuring serum corticosterone levels and the expression of corticotrophin-releasing factor in the hypothalamus. Daily BA administration significantly decreased the duration of immobility in the FST, increased sucrose consumption, and restored the stress-related decreases in dopamine concentrations in the hippocampus to near normal levels. BA significantly inhibited the stress-induced decrease in neuronal tyrosine hydroxylase immunoreactivity in the ventral tegmental area and the expression of brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. Taken together, these findings indicate that administration of BA prior to the repeated restraint stress significantly improves helpless behaviors and depressive symptoms, possibly by preventing the decrease in dopamine and BDNF expression. Thus, BA may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression.

Repeated restraint stress promotes hippocampal neuronal cell ciliogenesis and proliferation in mice

  • Lee, Kyounghye;Ko, Hyuk Wan
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.203-210
    • /
    • 2018
  • Stress severely disturbs physiological and mental homeostasis which includes adult neurogenesis in hippocampus. Neurogenesis in hippocampus is a key feature to adapt to environmental changes and highly regulated by multiple cellular signaling pathways. The primary cilium is a cellular organelle, which acts as a signaling center during development and neurogenesis in adult mice. However, it is not clear how the primary cilia are involved in the process of restraint (RST) stress response. Using a mouse model, we examined the role of primary cilia in repeated and acute RST stress response. Interestingly, RST stress increased the number of ciliated cells in the adult hippocampal dentate gyrus (DG). In our RST model, cell proliferation in the DG also increased in a time-dependent manner. Moreover, the analysis of ciliated cells in the hippocampal DG with cell type markers indicated that cells that were ciliated in response to acute RST stress are neurons. Taken together, these findings suggest that RST stress response is closely associated with an increase in the number of ciliated neurons and leads to an increase in cell proliferation.

The Effect of Repeated Restraint Stress on Clusterin Change of the Rat Salivary Glands (구속 스트레스가 백서 타액선 조직 내의 clusterin 변화에 미치는 영향)

  • Lee, Ko-Woon;Kang, Soo-Kyung;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.37 no.2
    • /
    • pp.81-91
    • /
    • 2012
  • It has been known that saliva may affect the most of oral diseases. On the contrary, several systemic conditions may affect salivary flow and cause oral dryness and psychosocial stress especially may a crucial role in the etiology of hyposalivation and oral dryness. Many studies have focused on macroscopic effects of the stress on the salivary glands by autonomic respose, but on the other hand it has hardly been reported on cellular microscopic effects of the stress on the salivary glands. Therefore, this study was performed to examine clusterin, a antiapoptotic and cytoprotective protein, in the parotid glands under restraint stress condition. For this study, 10 rats were divided into 3 groups; 1) 2 rats of group I were selected as a normal control. 2) 2 rats of group II, as a experimental control were placed in the restraint cone for 2 hours 3) 6 rats of group III were placed in the restraint cone for 2 hours once a day. The rats were sacrificed immediately(group II, as a experimental control), 24, 48, and 72 hours after application of the stress and the parotid glands were excised. Western blotting and immunohistochemistry were performed. The finding were as follows: 1. In parotid glands, clusterin was mildly increased and clearly expressed in the ductal cell under restraint stress immediately after application of the stress. 2. In parotid glands, clusterin was significantly decreased and slightly stained in the ductal cell under restraint stress 24 and 48 hours after experiment. 3. In parotid glands, clusterin was prominently increased again and densely stained in the ductal cell under restraint stress 72 hours after experiment.

The Effects of Astragalus Membranaceus on Repeated Restraint Stress-induced Biochemical and Behavioral Responses

  • Park, Hyun-Jung;Kim, Hyun-Young;Yoon, Kun-Ho;Kim, Kyung-Soo;Shim, In-Sop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2009
  • Astragalus Membranaceus (AM) is a useful Korean herb that has been clinically prescribed for stress-related illness. The objective of the present study was to examine the anti-stress effects of AM on repeated stress-induced alterations of anxiety, learning and memory in rats. Restraint stress was administered for 14 days (2h/day) and AM (400mg/kg) given by oral administration, in the AM group, for the same period. Starting on the eighth day, the rats were tested for spatial memory on the Morris water maze test (MW) and for anxiety on the elevated plus maze (EPM). Changes of expression on immunohistochemistry were studied for cholineacetyl transferase (ChAT) and tyrosine hydroxylase (TH) in the brain. The results showed that the rats treated with AM had significantly reduced stress-induced deficits on learning and memory on the spatial memory tasks. In addition, the ChAT immunoreactivities were increased. In the EPM, treatment with AM increased the time spent in the open arms (p<0.001) compared to the control group. In addition, AM treatment also normalized increases of TH expression in the LC (p<0.001). In conclusion, administration of AM improved spatial learning and memory and reduced stress-induced anxiety. Thus, the present results suggest that AM is able to recover behavioral and neurochemical impairments induced by stress.

The Effects of Repeated Restraint Stress on the Rat Parotid Glands, Ultramicroscopical and Histochemical Study (구속 스트레스에 대한 백서 타액선 조직의 미세구조적, 조직화학적 변화)

  • Yoon, In-Jong;Kang, Soo-Kyung;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.2
    • /
    • pp.121-136
    • /
    • 2013
  • It has been known that saliva may affect the most of oral diseases. On the contrary, several systemic conditions may affect salivary flow and cause oral dryness and psychosocial stress especially may a crucial role in the etiology of hyposalivation and oral dryness. Many studies have focused on macroscopic effects of the stress on the salivary glands by autonomic response, but on the other hand it has hardly been reported on cellular microscopic effects of the stress on the salivary glands. Therefore, this study was performed to examine clusterin, a antiapoptotic and cytoprotective protein, in the parotid glands under restraint stress condition. For this study, 18 rats were divided into 3 groups; 1) 2 rats of group I were selected as a normal control. 2) 2 rats of group II, as a experimental control were placed in the restraint cone for 2 hours 3) 14 rats of group III were placed in the restraint cone for 2 hours once a day. The rats were sacrificed immediately(group II, as a experimental control), 1, 2, 3, 4, 5, 6 and 7 days after application of the stress and the both parotid glands were excised. Immunohistochemistry and electron microscopy were performed. The finding were as follows: 1. In parotid glands, repeated stress denaturalize the acinar cells, interacinous tissues and interacinous connective tissues were separated to individual acinar cells. After 4 days of experiment, there were lots of vacuoles and intercalated ducts. 2. In parotid glands, repeated stress make the rER which is in acinar cells swollen after 3 days of experiment and it was intensified to 4 days. After 5 days of experiment the edema got worse and degenerated. 3. In parotid glands, clusterin was reduced in ductal cell cytoplasm but in intercalated duct clusterin was slightly stained until 3 days prominently increased until 4 days and then decreased again after 5 days of experiment.

Effects of Glycyrrhizae Radix on Repeated Restraint Stress-induced Neurochemical and Behavioral Responses

  • Park, Hyun-Jung;Shim, Hyun-Soo;Kim, Hyun-Young;Kim, Kyung-Soo;Lee, Hye-Jung;Hahm, Dae-Hyun;Shim, In-Sop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.371-376
    • /
    • 2010
  • Glycyrrhizae radix (GR) is an herbal medicine that is commonly used in the East Asia for treating a variety of diseases, including stomach disorders. The objective of the present study was to examine the anti-stress effects of GR on repeated stress-induced alterations of anxiety, learning and memory in rats. Restraint stress was administered for 14 days (2 h/day) to the rats in the Control and GR groups (400 mg/kg/day, PO). Starting on the eighth day, the rats were tested for spatial memory on the Morris water maze test (MW) and for anxiety on the elevated plus maze (EPM). We studied the changes of the expressions of cholineacetyl transferase (ChAT) and tyrosine hydroxylase (TH) in the locus coerleus (LC) using immunohistochemistry. The results showed that the rats treated with GR had significantly reduced stress-induced deficits on their learning and memory on the spatial memory tasks. In addition, the ChAT immunoreactivities were increased. Gor the EPM, treatment with GR increased the time spent in the open arms (p<0.001) as compared to that of the control group. Moreover, GR treatment also normalized the increases of the TH expression in the LC (p<0.001). In conclusion, administration of GR improved spatial learning and memory and reduced stress-induced anxiety. Thus, the present results suggest that GR has the potential to attenuate the behavioral and neurochemical impairments caused by stress.

Anti-Depressant Like Effect of Methyl Gallate Isolated from Acer barbinerve in Mice

  • Lee, Jin-Koo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.441-446
    • /
    • 2013
  • In the present study, the anti-depressant like effect of methyl gallate (MG) isolated from the stem bark of Acer barbinerve was examined in ICR mice. Body weight (BDW) and blood glucose (BDG) levels significantly decreased in the repeated restraint stress (RRS) group (2 h/day for 14 days) compared to the no stress (NS) group. To examine the effect of MG on RS-induced BDW loss and hypoglycemia, MG (10 mg/kg) and the anti-depressant fluoxetine (10 mg/kg) were administered daily for 14 days. Orally administered MG and fluoxetine significantly attenuated the RS-induced BDW loss and hypoglycemia. Interestingly, MG administered mice showed increased BDG levels in the normal and glucose feeding condition. Chronic RS-subjected mice showed immobilized and depressed behaviors. The effect of MG on the depressed behaviors was evaluated using the tail-suspension test (TST) and the forced swimming test (FST). In both tests, RS-induced immobilized behaviors were significantly reversed in MG and fluoxetine administered groups. Taken together, MG significantly attenuated the RS-induced BDW loss, hypoglycemia, and depressed behaviors. Considering that decreased BDG levels (hypoglycemia) can cause depression, MG may exert its anti-depressant like effect by preventing hypoglycemia. Our results suggest that MG isolated from A. barbinerve can exert anti-depressant like effect, and could be used as a new and natural anti-depressant therapy.

Chronic Non-Social Stress Affects Depressive Behaviors But Not Anxiety in Mice

  • Yoon, Sang Ho;Kim, Byung-Hak;Ye, Sang-Kyu;Kim, Myoung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.263-268
    • /
    • 2014
  • The etiology of most psychiatric disorders is still incompletely understood. However, growing evidence suggests that stress is a potent environmental risk factor for depression and anxiety. In rodents, various stress paradigms have been developed, but psychosocial stress paradigms have received more attention than non-social stress paradigms because psychosocial stress is more prevalent in humans. Interestingly, some recent studies suggest that chronic psychosocial stress and social isolation affects mainly anxiety-related behaviors in mice. However, it is unclear whether chronic non-social stress induces both depression- and anxiety-related phenotypes or induces one specific phenotype in mice. In the present study, we examined the behavioral consequences of three chronic non-social stress paradigms: chronic predictable (restraint) stress (CPS), chronic unpredictable stress (CUS), and repeated corticosterone-HBC complex injection (RCI). Each of the three paradigms induced mild to severe depression/despair-like behaviors in mice and resulted in increased immobility in a tail suspension test. However, anxiety-related phenotypes, thigmotaxis and explorative behaviors, were not changed by the three paradigms. These results suggest that depression- and anxiety-related phenotypes can be dissociated in mouse stress models and that social and non-social stressors might affect brain circuits and behaviors differently.

Neurogenic effect of exercise via the thioredoxin-1/ extracellular regulated kinase/β-catenin signaling pathway mediated by β2-adrenergic receptors in chronically stressed dentate gyrus

  • Kim, Mun-Hee;Leem, Yea-Hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.3
    • /
    • pp.13-21
    • /
    • 2019
  • [Purpose] Chronic stress is a precipitating factor for depression, whereas exercise is beneficial for both the mood and cognitive process. The current study demonstrates the anti-depressive effects of regular exercise and the mechanisms linked to hippocampal neurogenesis. [Methods] Mice were subjected to 14 consecutive days of restraint, followed by 3 weeks of treadmill running, and were then subjected to behavioral tests that included the forced swimming and Y-maze tests. Protein levels were assessed using western blot analysis and newborn cells were detected using 5-bromo-2'-deoxyuridine (BrdU). [Results] Three weeks of treadmill running ameliorated the behavioral depression caused by 14 days of continuous restraint stress. The exercise regimen enhanced BrdU-labeled cells and class III β-tubulin levels in the hippocampal dentate gyrus, as well as those of thioredoxin-1 (TRX-1) and synaptosomal β2-adrenergic receptors (β2-AR) under stress. In vitro experiments involving treatment with recombinant human TRX-1 (rhTRX-1) augmented the levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2), nuclear β-catenin, and proliferating cell nuclear antigens, which were previously inhibited by U0216 and FH535 (inhibitors of ERK1/2 and β-catenin/T cell factor-mediated transcription, respectively). The hippocampal neurogenesis elicited by a 7-day exercise regimen was abolished by a selective inhibitor of β2-AR, butoxamine. [Conclusion] These results suggest that TRX-1-mediated hippocampal neurogenesis by β2-AR function is a potential mechanism underlying the psychotropic effect of exercise.