• Title/Summary/Keyword: Repeated load test

Search Result 206, Processing Time 0.03 seconds

Behavior of reinforced concrete segmental hollow core slabs under monotonic and repeated loadings

  • Najm, Ibrahim N.;Daud, Raid A.;Al-Azzawi, Adel A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.269-289
    • /
    • 2019
  • This study investigated experimentally the response of thick reinforced concrete specimens having hollow cores with critical parameters. The investigation includes testing of twelve specimens that are solid and hollow-core slab models. Each specimen consists of two pieces, the piece dimensions are (1.2 m) length, (0.3 m) width and (20 cm) thickness tested under both monotonic and repeated loading. The test program is carried out to study the effects of load type, core diameters, core shape, number of cores, and steel fiber existence. Load versus deflection at mid span, failure modes, and crack patterns were obtained during the test. The test results showed that core shape and core number has remarkable influenced on cracking pattern, ultimate load, and failure mode. Also, when considering repeated loading protocol, the ultimate load capacity, load at yielding, and ductility is reduced.

Rutting Potential Evaluation of Asphalt Mixtures by Repeated-Load Creep Test (반복하중 크리프시험에 의한 아스팔트 혼합물의 소성변형특성 평가)

  • Zhu L.Y.;Fwa T.F.
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.21-28
    • /
    • 2006
  • Field or laboratory wheel tracking tests have been employed for the evaluation of the rutting potential of asphalt paving mixtures. Compared to field tests, laboratory wheel tracking tests are much less expensive and more manageable for most road projects. However, most test laboratories are not equipped to perform such tests because there does not exist any standard test procedure, and the required equipment is rather expensive. Futhermore, the size of test specimens and the relatively large quantity of test mixture required present difficulties for laboratory specimen mixing and compaction. This paper describes a project conducted to study the feasibility of replacing wheel tracking testsby a repeated-load creep test for rutting potential evaluation. Comparisons were made between the results of the two tests for different test temperatures, loading speeds and applied pressures. Three types of asphalt mixtures were studied in the test program. Favorable conclusions concerning the use of the repeated-load test for rutting potential evaluation were drawn based on the findings of the experimental test results. The correlation between the two types of tests was found to be good for all threeasphalt mixtures. Adopting the repeated-load creep test would lead to cost savings since it employs standard test equipment already available in most laboratories. It would also result in substantial time savings due to the much smaller quantity of mix needed, and the ease in specimen preparation.

  • PDF

Structural Behavior of a RC Bridge Slab Retrofitted with Carbon Fiber Sheet under Large Repeated Load

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • An experimental investigation on the flexural fatigue behavior of a RC bridge slab retrofitted with Carbon Fiber Sheet (CFS) is presented. The test slab was almost identical to the slab of a highway viaduct in terms of the amount of reinforcement, quality of concrete and thickness of the slab, which was 18cm. Repeated load corresponding to 3.0, 4.5 or 6.0 times of the design load was applied to the test slab. Normal type and high-elastic modulus type of CFS were used for strengthening. The test slabs were loaded in dry or wet condition. Two different types of an-choring system were adapted. Some of the test slabs were damaged by the repeated load and retrofitted by CFS, then loaded again to see the improvement of the fatigue life. Infrared Thermography was also performed to investigate the debonding condition of CFS. From the test results, Carbon Fiber Sheet can be applied to the RC bridge slabs as a feasible retrofitting material.

  • PDF

Fatigue characteristics of the IT girder for railroad (철도교용 IT거더의 피로특성)

  • Choi, Sang-hyun;Lee, Chang-soo
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.1
    • /
    • pp.140-152
    • /
    • 2010
  • In designing a railroad bridge, the fatigue is one of the main factors to be considered for ensuring safe operation. Especially, for a new type of a structural member, which has not been adopted to railroad bridges, the fatigue performance should be checked. In this paper, the fatigue characteristics of an IT girder are examined. The IT girder is a new type of a prestressed concrete girder which has two prestressed H-beams in the top of the girder to give the girder additional sectional capacity. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the load cyclically two million times. The magnitude of the repeated load is determined considering the stress level under the service condition. During the test, static load tests are performed to identify the stiffness degradation. The fatigue performance of the girder is checked according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

Effects of TiN Coating on the Fatigue Fracture of Dental Implant System with Various Cyclic Loads

  • Jung, Da-Un;Chung, Chae-Heon;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.6
    • /
    • pp.283-291
    • /
    • 2015
  • The purpose of this study was to investigate effects of TiN coating on the fatigue fracture of dental implant system with various cyclic loads. TiN coated abutment screw, the fixture, and abutment of internal hex type were prepared for fatigue test. The fatigue test was carried out according to ISO 14801:2003(E) using tensile and compression tester with repeated load from 30% to 80% of static fracture force. Morphology and fractured surface was observed by field emission scanning electron microscope(FE-SEM) and energy dispersive X-ray spectroscope(EDS). The fracture cycle drastically decreased as repeated load increased. Especially, in the case of TiN-coated abutment screw, fracture cycle increased compared to non-coated abutment screw. The fatigue crack was propagated fast as repeated load increased. The plastic deformation region decreased, whereas, cleavage fracture region increased as repeated load increased.

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Fatigue characteristics of the IT girder for railroad (철도교용 IT거더의 피로특성)

  • Choi, Sang-hyun;Lee, Chang-soo
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.2
    • /
    • pp.119-130
    • /
    • 2010
  • In designing a railroad bridge, the fatigue is one of the main factors to be considered for ensuring safe operation. Especially, for a new type of a structural member, which has not been adopted to railroad bridges, the fatigue performance should be checked. In this paper, the fatigue characteristics of an IT girder are examined. The IT girder is a new type of a prestressed concrete girder which has two prestressed H-beams in the top of the girder to give the girder additional sectional capacity. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the load cyclically two million times. The magnitude of the repeated load is determined considering the stress level under the service condition. During the test, static load tests are performed to identify the stiffness degradation. The fatigue performance of the girder is checked according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading (반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

Agricultural tractor roll over protective structure (ROPS) test using simplified ROPS model

  • Ryu-Gap Lim;Young-Sun Kang;Dae-Hyun Lee;Wan-Soo Kim;Jun-Ho Lee;Yong-Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.823-835
    • /
    • 2022
  • In this study, the feasibility of alternative tractor Roll Over Protective Structure (ROPS) designed to evaluate conditions required for testing was confirmed. In accordance with Organization for Economic Cooperation and Development (OECD) code 4, the required load energy of the tractor ROPS was determined. First, the tractor ROPS test was performed and a repeated test was performed using a simplified ROPS as an alternative tractor ROPS. The test procedure is first rearward, second lateral, and last forward based on ROPS. The load test device consists of a load cell that measures force and a LVDT that measures deformation. Precision was confirmed by calculating the relative standard deviation of the simplified ROPS repeated test. Accuracy was analyzed by calculating the mean relative error between the mean measured values in the simplified ROPS test and the tractor ROPS test. As a result, the relative standard deviation was less than 2.5% for force and 3.3% for maximum deformation overall, showed the highest precision in lateral load. The mean relative error value for force measured at the lateral load of simplified ROPS was 0.5%, showing the highest accuracy. In the front load test, the mean relative error of maximum deformation was 20.5%, showing the lowest accuracy. The mean relative error (MRE) was high in the forward load test was because of structural factors of the ROPS. The simplified ROPS model is expected to save money and time spent preparing tractors.

An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load (피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF