• Title/Summary/Keyword: Repair and inspection

Search Result 326, Processing Time 0.026 seconds

Perception Survey on the Necessity of Improvement for the Standard Buoys Fouling Maintenance

  • Yoo, Yun-Ja;Kim, Tae-Goun;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.43 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • In 2001, about 20 years after the introduction of the standard buoys, the natural environment and maritime traffic flow changes in the waters near Korea and the necessity of improvement of the AtoN (Aids to Navigation) maintenance was suggested. The IALA provides guidelines for maintenance and management of AtoN, and Korea provides guidelines for the management and operation of standard buoys by means of the Enforcement on the AtoN laws. The objective of this study was to investigate the installation status and the repair status of the standard type buoys by sea area in order to improve the management and operation of the steel standard buoys. In addition, a survey was conducted on the improvement of the steel buoy fouling and the improvement of the lifting inspection cycle towards on the AtoN managers and producers of the representative authority by sea area. In the case of LL-26 (M) buoy type, the standard type buoy installation status of Korea in 2017 was 57.1%, and the LL-26 (M) type was 58.9% showing the highest repair rate. According to the results of the survey on buoys fouling, 51.2% were caused by the attachment of shellfish, and 43.2% were caused by bird feces. The results of the survey on the improvement of the regular buoy inspection cycle showed that the measures are to maintain the current inspection period of 2 years regardless of the characteristics of the sea area (water depth, inside and outside port, buoy size, etc.).

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.

Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel (터널 유지관리를 위한 안전진단시스템 개발에 관한 연구)

  • Kim, Young-Geun;Baek, Ki-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2001
  • Recently, as tunnel structure is getting old, many deformations and defects have been occurred. As tunnel has the characteristics of underground structure, the estimation of the cause of deformation is very difficult. Then, it is necessary to investigate the state of tunnel lining and to estimate the deformation cause and safety for tunnel. In this study, inspection and diagnosis system for effective maintenance in tunnel was researched. Firstly, non-destructive techniques such as GPR (ground penetrating radar), impact echo test, and infrared thermal techniques were applied to tunnel lining inspection. Tunnel lining analysis system was developed to analyze the stability of tunnel. And, tunnel soundness evaluation system was developed to find the probable causes and indicate the method for repair and reinforcement for tunnel.

  • PDF

Development and Application of the Simulator of Lighting Devices for Automotive Technical Education (차량 정비 기능 교육을 위한 등화장치 시뮬레이터 개발 및 활용)

  • Chae, Soo
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.91-94
    • /
    • 2016
  • This study is focused on the development and application of automotive lighting system simulator device to help understanding of the repair and overhaul, electrical instrumentation and automotive circuit checks the contents of the automotive electrical system. The purpose of this study is to define the circuit numeracy, circuit repair preparation skills, detachable power, circuit analysis capabilities, inspection and measurement capability, and repair (problem solving) skills, through the cultivation of clean ability to increase the understanding of electrical equipment maintenance circuitry to verify the improvement of the repair. Automotive electrical device requires understanding of the invisible parts, and understanding of the various symbols and complex circuitry to measure the basic checks and repair are indispensable. This paper would likely contribute to help students to gain more interest in the fields that they feel difficult such as basic skills which necessary to cultivate a variety of electrical equipment fault diagnosis of the basic knowledge needed for electric cars practical.

Review of the Priority Index for Selection between Repair and Reinforcement Methods of Dam Facilities (댐 시설물 보수·보강공법 선정을 위한 우선순위지수에 대한 고찰 )

  • Dong Hyun Kim;Hyung Jun Park;Hee Jung Youn;Seung Oh Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • After the collapse of the Seongsu Bridge in the 1990s in Korea, attention was focused on the maintenance of facilities. The government has established various policies since the enactment of the Act in 1995 until recently. In general, safety inspections are performed to evaluate the safety grade of facilities, and facilities are maintained and managed by performing repairs and reinforcements for defects. However, since the budget is limited, it is impossible to carry out repair and reinforcement projects for all defects. It is necessary to prioritize repair and reinforcement measures. Then, the priority index (PI) is presented considering the importance of members, the seriousness of defects, and economic feasibility. In this index, the degree of influence can be adjusted within the range of 50 to 100% according to the expert's subjective judgment, and the same weight is set for some specific members. Also, the effect through repair and reinforcement is not taken into account decisively, and most of them have a limit in which priority is determined by economic feasibility. Therefore, in this study, through several case studies, problems with the priority index were reviewed and an equation was presented to improve them.

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells

  • Lee, K.S.;Cha, S.H.;Kang, H.W.;Song, J.Y.;Lee, K.W.;Ko, K.B.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.588-595
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs) were isolated from umbilical cord matrix (n = 3) and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1), molecule (HMGA2) and pluripotent markers (sox2, nanog) associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105) and pluripotent marker (Oct3/4) decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.

Preliminary Analysis on Artificial Intelligence-based Methodology for Selecting Repair and Rehabilitation Methods of Bridges (인공지능 기반의 교량 보수공법 선정 기술 개발을 위한 선행 분석)

  • Kim, Jonghyeob;Jung, In-Su;Yun, Won-Gun;Kim, Jung-Yeol;Park, In-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.861-872
    • /
    • 2021
  • An efficient cost management is important for the domestic social overhead capital(SOC) based on a long lifecycle after 30 years since completion. Maintenance in South Korea have had the restrictions of consistency and suitability of decision-making by the establishment of a budget plan based on the company estimate and repair and reinforcement methods determined by the inspection and diagnosis engineers' subjective determination for each facility. To resolve this issue, the Korea Institute of Civil Engineering and Building Technology is currently in development of a methodology to propose an optimum maintenance method according to the damage of components by artificial intelligence. This study has deduced the primary factors by analyzing information generated during bridge maintenance and management as a prior step for the development of technologies, and conducted a preliminary analysis to select the optimum artificial intelligence technology.

A Study on the Safety Inspection of Erosion Control Facilities (I): In Case of Check Dams Located in the Gangwon Region (사방시설의 안전점검에 관한 연구(I) - 강원지역의 사방댐 점검결과를 중심으로 -)

  • Lee, Jin-Ho;Chun, Kun-Woo;Lee, Sang-Myung;Park, Ju-Hwan;Kim, Bong-Ki;Kim, Suk-Woo;Seo, Jung Il
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • Recently check dam construction number have been increased by becoming known that effectiveness in the control of the landslide and debris flow. However, check dam management standards are not setting yet. Therefore, this study was carried by provide a basic data for the check dam management and inspection in the Gangwondo. The followings are the results of safety inspection on the 274 check dams, which are located in mountain streams, Gangwondo, Republic of Korea. 1. It was determined that, of 274 check dams inspected, 267 check dams (97.4%) generally had a safe condition but 7 check dams (2.6%) had a bad condition that repair and/or complementary measures are required. 2. The check dams with a bad condition had the ages greater than approximately 20 years. This result should be reflected to future stream management strategy including a timing of the specific inspection for durability of check dams. 3. Our finding suggests that the safety inspection of check dams is able to provide basic information required to maintain their own functions, and thus it should be widely applied to stream management strategy against to sediment-related disasters in the future.

A Study on Vision System Design for Automatic Inspection of Steam Generator in Nuclear Power Plants (원전 스팀 제너레이터 세관 자동검사용 비젼시스템 설계에 관한 연구)

  • 한성현;서운학;천영신;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.658-665
    • /
    • 1998
  • In this paper, we propose a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the proposed vision system. Performance of the proposed digital vision system is illustrated by simulation and experiment for similar steam generator model.

  • PDF