• Title/Summary/Keyword: Reorder Point

Search Result 32, Processing Time 0.016 seconds

Approximate Continuous Review Inventory Models with the Consideration of Purchase Dependence (구매종속성을 고려한 근사적 연속검토 재고모형)

  • Park, Changkyu;Seo, Junyong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.98-108
    • /
    • 2015
  • This paper introduces the existence of purchase dependence that was identified during the analysis of inventory operations practice at a sales agency of dealing with spare parts for ship engines and generators. Purchase dependence is an important factor in designing an inventory replenishment policy. However, it has remained mostly unaddressed. Purchase dependence is different from demand dependence. Purchase dependence deals with the purchase behavior of customers, whereas demand dependence deals with the relationship between item-demands. In order to deal with purchase dependence in inventory operations practice, this paper proposes (Q, r) models with the consideration of purchase dependence. Through a computer simulation experiment, this paper compares performance of the proposed (Q, r) models to that of a (Q, r) model ignoring purchase dependence. The simulation experiment is conducted for two cases : a case of using a lost sale cost and a case of using a service level. For a case of using a lost sale cost, this paper calculates an order quantity, Q and a reorder point, r using the iterative procedure. However, for a case of using a service level, it is not an easy task to find Q and r. The complexity stems from the interactions among inventory replenishment policies for items. Thus, this paper considers the genetic algorithm (GA) as an optimization method. The simulation results demonstrates that the proposed (Q, r) models incur less inventory operations cost (satisfies better service levels) than a (Q, r) model ignoring purchase dependence. As a result, the simulation results supports that it is important to consider purchase dependence in the inventory operations practice.

Inventory Management in Construction Operations Involving on-site Fabrication of Raw Materials (원자재 조립.가공과정을 갖는 건설공사 프로세스의 적정 재고관리 방안에 관한 연구)

  • Im, Keon-Soon;Han, Seung-Heon;Jung, Do-Young;Ryu, Chung-Kyu;Choi, Seok-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.187-198
    • /
    • 2008
  • There are usually plenty of material inventories in a construction site. More inventories can meet unexpected demands, and also they may have an economical advantage by avoiding a probable escalation of raw material costs. On the other hand, these inventories also cause negative aspects to increase costs for storing redundant inventory as well as decreasing construction productivity. Therefore, a proper method of deciding an optimal level of material inventories while considering dynamic variations of resources under uncertainty is very crucial for the economical efficiency of construction projects. This research presents a stochastic modelling method for construction operations, particularly targeting a work process involving on-site fabrication of raw materials like iron-rebar process (delivery, cut and assembly, and placement). To develop the model, we apply the concept of factory physics to depict the overall components of a system. Then, an optimal inventory management model is devised to support purchase decisions where users can make timely actions on how much to order and when to buy raw materials. Also, optimal time lag, which minimizes the storage time for pre-assembled materials, is obtained. To verify this method, a real case is applied to elicit an optimal amount of inventory and time lag. It is found that average values as well as variability of inventory level decreased significantly so as to minimize economic costs related to inventory management under uncertain project condition.