• 제목/요약/키워드: Renolds Number

검색결과 7건 처리시간 0.018초

CH-OH PLIF와 Stereoscopic PIV계측법을 이용한 난류예혼합화염의 관찰 (Simultaneous Measurement of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames)

  • 최경민
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.102-103
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry(PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Renolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Renolds number turbulent premixed flame.

  • PDF

대와류모사법을 이용한 원주 주위의 공력소음 특성에 관한 기초연구 (A Basic Study on the Aero-acoustic Noise Characteristics around a Circular Cylinder using the Large Eddy Simulation)

  • 모장오;이영호
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.5-11
    • /
    • 2010
  • As a basic study of the aero-acoustic noise, Large eddy simulations were carried out for a fixed circular cylinder at Renolds number (Re=$9.0\times10^4$) using commercial CFD code, FLUENT. The subgrid-scale turbulent viscosity was modeled by Smagorinsky-Lilly model adapted to structured meshes. The results of analysis showed that time-averaged value, $\bar{C}_D$ is approximately 1.47 which is considerably adjacent with the experimentally measured value of 1.32 in comparison to the values performed by previous researchers. It is observed that there are the very small acoustic pressure fluctuation with the same frequency of the Karman vortex street.

수두차를 이용한 해저퇴적물 흡입현상의 수치시뮬레이션 (NUMERICAL SIMULATION ON THE FLOW PHENOMENON OF SEDIMENT INHALATION BY DIFFERENCE OF WATER HEAD)

  • 정광열;이영길;정우철;손충렬
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.213-217
    • /
    • 2005
  • In this study the water including sediment is assumed that the density is different from fresh water. And the phenomenon inhaled by low pressure around the pipe is numerically simulated in two dimension. The simulation is done using finite difference method in rectangular staggered mesh system and Navier-Stokes equations and continuty equation are employed as governing equations. The method of Irregular leg lengths and stars are adopted to satisfy boundary condition of body boundary. Marker-Density method is used to calculate the density of mixed flow. Also SGS turbulence model is applied to consider vortex smaller then grid at high Renolds number. This study is to analyze inhalation phenomenon of mixed flow with sediment and to verify the numerical method for mixed flow. To verify the numerical results are compared with experimental results

  • PDF

새로운 도선감는 방법을 사용한 전기장을 이용한 스케일 제거 (Prevention of Particulate Scale with a new winding method in the Electronic Descaling Technology)

  • 김건우;안희섭;손창현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.180-186
    • /
    • 2000
  • This paper presents a new winding method in the electronic descaling(ED) technology. The ED technology Produces an oscillating electric field via the Faraday's law to Provide necessary molecular agitation to dissolved mineral ions. But present method gives another agitation force to mineral ions, which is Lorentz's force. Experiments were peformed at various Renolds number. A series of tests was conducted, measuring pressure drop across test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water of 1000ppm $CaCO_3$ was used throughout the tests. The results show that the new method accelerates collision of mineral ions and improvs efficiency of system.

  • PDF

연료전지 개질기로 활용을 위한 스위스 롤 연소기의 크기와 연료의 종류에 따른 특성연구 (Effect of Scale and Fuel Type on Heat-recirculating Swiss-roll Combustor Performance for Fuel Cell Reformer Applications)

  • 김연호;허환일
    • 한국추진공학회지
    • /
    • 제15권1호
    • /
    • pp.11-18
    • /
    • 2011
  • 비슷한 형상을 가진 스위스롤 연소기의 물리적 크기에 대한 시험이 레이놀즈수와 담��러수의 독립적인 효과를 알아보기 위해 진행되었다. 이를 통해서 촉매연소와 비촉매연소의 소염한계 경계가 연소기의 크기 감소에 따라 다른 경향으로 좁아지는 것을 알 수 있었다. 추가적으로 연료의 화학적 성질의 중요성을 판단하기 위해 알칸기와 에테르기를 포함한 동종의 다른 형태 연료를 적용하여 시험을 수행하였다. 이러한 결과들을 통해 연소기의 크기와 연료의 형태에 따른 효과로 소형 연소기의 성능 및 그러한 장치들에 미치는 영향력에 대한 부분들이 논의되었다.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

동시 회전원판 사이의 간격변화에 따른 열전달 특성 (Effects of Gap Spacing on Heat Transfer Characteristics for Co-Rotating Disks)

  • 류구영;원정호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.570-577
    • /
    • 2000
  • Local heat transfer characteristics inside a hard disk driver(HDD) are investigated in this study. The investigation is considered between disks co-rotating in a cylindrical enclosure. The gap spacing, rotating speed and head-arm positions are mainly considered to understand the flow and heat transfer in the co-rotating disks. The naphthalene sublimation technique is used to determine local heat/mass transfer coefficients on the rotating disk. Flow patterns inside the co-rotating disks are investigated using a Laser Doppler Anemometer (LDA) and also analyzed numerically. The results show that the heat transfer coefficients on the disk changed little with the gap spacing between disks. Heat transfer rates in the outer region increases with increasing rotating Renolds number, but the values normalized by that on a free rotating disk give a similar pattern for the tested cases. The head-arm inserted between the rotating disks destroys the inner region resulting in enhancement of heat transfer in that region.