• 제목/요약/키워드: Rennet coagulation

검색결과 8건 처리시간 0.019초

가열유(加熱乳)의 검출법(檢出法) (Detection Method of Heated Milk)

  • 이부웅;장운기;김태화;허문영
    • Journal of Dairy Science and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.113-118
    • /
    • 2004
  • 가열유는 rennet 응고성, 전자현미경법, -SH기정량, 전기영동적 관찰법, 340nm에서 흡광도 측정법 등 여러 가지 방법에 의하여 판정이 가능하나 간편성, 신속성으로 보아 rennet 응고성 이용이 가장 돌출하다. 70도 이상의 가열유는 rennet 응고성을 이용하여 판정이 가능하다. 앞으로 $55^{\circ}C$ 부근의 예열 수준도 검출할 수 있는 방법이 더 개발되어야 한다.

  • PDF

Characterization of Equine Milk and Cheese Making

  • Chang, O.K.;Humbert, G.;Gaillard, J.L.;Lee, B.O.
    • 한국축산식품학회지
    • /
    • 제26권3호
    • /
    • pp.368-374
    • /
    • 2006
  • We have studied on characterization and cheese making like mineral contents, protein composition and coagulation pattern on equine milk. At first, for contents of mineral on equine milk, It was lower in equine than bovine milk Contents of Na, Mg, P, Ca and K the major minerals, were indicated as 18.3 mg, 0.4 mg, 33.3 mg, 80.9 mg and 134.9 mg respectively by 100 g. In the distribution of nitrogen, the ratio NPN to Nt was indicated as 9.8% while that of bovine milk was 7%. And In NCN, its percentage was indicated as 45.6% shelving that Equine casein was lower than bovine. From these results, equine milk could not be applicable to cheese production since there are no coagulable nitrogen fraction such as ${\kappa}$-casein, as there aye with bovine milk. Equine milk will be more acceptable if we accept that the phylogenic affinity is near to human. It is the same as equine from the view points that monogastric, which did not contain ruminant's casein. For the rennet coagulation, equine milk was different than bovine milk. Equine milk did not coagulated by rennet after the addition of $Ca^{2+}$. But when bovine ${\kappa}$-casein was added in the presece of rennet, and $Ca^{2+}$ to equine milk, coagulation occurred. Such phenomenon was also observed by the use SEM. Verification of ${\kappa}$-casein by SDS-PACE did not existed in equine milk. The Casein of equine milk(54.4%) is similar to human milk in that casein/whey is about 1. For equine milt this can be explained because distance between casein and Ca is great, casein being lower, which result in reaction of casein with $Ca^{2+}$ because it could not activated which lasting time of coagulation is too long.

Manufacture of Precheese Powder by Use of Low-temperature Renneting Made from Raw Milk Using Spray Dryer

  • An, Shuo-Feng;Piao, Jing-Zhu;Chang, Oun-Ki
    • 한국축산식품학회지
    • /
    • 제30권4호
    • /
    • pp.551-559
    • /
    • 2010
  • Among the food constituents, proteins differ in coagulation properties as compared to other constituents in food system. Especially milk protein coagulate through different pathways thus this coagulability can be used for manufacture of various dairy products or as a determinant of dairy product analysis. These milk coagulation methods include organic solvent, isoelectric point, trichloroacetic acid, Ca-sensitive casein, heavy metal ion and rennet coagulation. The coagulation experiment was performed using above parameters at $0^{\circ}C$ and $25^{\circ}C$ to find the dehydration conditions before coagulating for precheese powder making. After different chemical treatments, there was no coagulation at $0^{\circ}C$ rather at $25^{\circ}C$ whatever the mode of coagulation methods was. The appearance of precipitate with coagulation methods was quite different from above mentioned methods of coagulation illustrated by scanning electron microscope. These powders were used for fabrication of camembert cheese by renneting coagulation at $0^{\circ}C$, showing the possibility of cheese materials and of food additives for fabrication of products.

Chemical and Microbiological Quality, Capillary Electrophoresis Pattern, and Rennet Coagulation of UHT-treated and Irradiated Milk

  • Ham, Jun-Sang;Shin, Ji-Hye;Noh, Young-Bae;Jeong, Seok-Geun;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Wan-Kyu;Jo, Cheo-Run
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.58-65
    • /
    • 2008
  • To see the possibility of irradiation as an alternative to ultra high temperature (UHT) sterilization, the quality characteristics of milk were analyzed. Milk treated by UHT ($135^{\circ}C$ for 4 sec) and irradiation at higher than 3 kGy showed no viable counts after 7 days of storage at $4^{\circ}C$. The contents of certain amino acids of milk, such as Arg, Asp, Glu, Ile, Leu, Lys, Pro, Ser, Thr, and Tyr, were lower in irradiated groups at 10 kGy than in UHT-treated one, but no difference was observed between irradiated milks at less than 5 kGy and UHT. The capillary electrophoresis (CE) patterns of the milk irradiated at 10 kGy showed a similar trend to the raw milk, low temperature long time (LTLT, $63^{\circ}C$ for 30 min), and high temperature short time (HTST, $72^{\circ}C$ for 15 sec) treated. However, the CE pattern of UHT-treated milk was different. Rennet coagulation test agreed with the CE results, showing that all milk samples were coagulated by rennet addition except for UHT-treated milk after 1 hr. These results suggest that irradiation of milk reduce the content of individual amino acids but it may not induce severe conformational change at a protein level when compared with UHT treatment.

Kinetic Study of Milk Gellation by the Electrical Resistance Measurement

  • LEE Keun Tai
    • 한국수산과학회지
    • /
    • 제22권6호
    • /
    • pp.391-396
    • /
    • 1990
  • Changes in electric resistance was measured to carry out the kinetic analysis of milk gellation upon addition of rennet. Using pasteurized milk and commercial rennin, kinetic properties were investigated during milk gellation in terms of initial hydrolysis and coagulation steps. Specially designed reactor with two platinum electrodes was used throughout the experiments. As a function of either milk concentrations or reaction temperatures, gel time exhibited directly proportional relations: on the contrary, gel time was inversely pro-portional to enzyme concentration. Activation energies for enzymatic degradation and cogulation were 16.3, 4.6 and 34, 8.6 Kcal/mol, repectively. This simple analytical method proved to be very effective to characterize the mechanism of milk gellation. Moreover, unlike other methods, this method reguired simple apparatus and short time of analysis.

  • PDF

Effects of Mastitis on Buffalo Milk Quality

  • Tripaldi, C.;Palocci, G.;Miarelli, M.;Catta, M.;Orlandini, S.;Amatiste, S.;Di Bernardini, R.;Catillo, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권10호
    • /
    • pp.1319-1324
    • /
    • 2010
  • The objectives of this study were to compare the effectiveness of different indicators of mammary inflammation in buffalo and to evaluate the association of the indicators with buffalo milk yield, composition, and rennet coagulation properties. This study was carried out at four buffalo farms in central Italy using a total of 50 lactating buffalo. Milk from each buffalo was tested at the beginning, middle, and end of lactation. To evaluate the relationship between mastitis markers and milk components, three classes were defined for each of the following markers: total somatic cell count (TSCC), differential somatic cell count (DSCC), and bacteriological results The regression coefficient for the reference method and the alternative method of determining TSCC was 0.81, indicating that the method routinely used to analyze buffalo milk consistently underestimated actual TSCC. The milk samples positive for udder-specific bacteria also had higher TSCC values than the samples that were negative for bacteria ($872{\times}10^3$/ml vs. $191{\times}10^3$/ml). In samples that were positive for udder-specific bacteria, polymorphonuclear leukocytes (PMN) made up greater than 50% of the cells. Moreover, only 1% of the samples in the lowest TSCC class were positive for bacteria. The correlation between TSCC and PMN was stronger (0.70), and PMN values in buffalo milk increased significantly when the TSCC class changed from low (38%) to medium and high (56% and 64%). Milk yield was negatively related to TSCC. Significant changes in lactose (4.87%, 4.80% and 4.64%) and chloride content (0.650 mg/ml, 0.862 mg/ml and 0.882 mg/ml) were also observed with increasing TSCC values. Higher TSCC was associated with impaired rennet coagulation properties: the clotting time increased, while the curd firming time ($p{\leq}0.05$) and firmness decreased. We concluded that in buffalo as in dairy cows, TSCC is a valid indicator of udder inflammation; we also confirmed that a value of $ 200{\times}10^3 cells/ml should be used as the threshold value for early identification of an animal affected by subclinical mastitis. In addition to its association with significantly decreased milk yield, a TSCC value above this threshold value was associated with changes in milk composition and coagulating properties.

Thermolysin의 고정화(固定化)와 고정화(固定化) Thermolysin의 Cheese제조(製造)에의 이용(利用) (Immobilization of Thermolysin and Application of the Immobilized Thermolysin to Cheese-making)

  • 윤세억
    • 한국식품과학회지
    • /
    • 제20권2호
    • /
    • pp.245-251
    • /
    • 1988
  • Thermolysin 을 Dowex MWA-1에 10% glutaraldehyde로 고정화하였으며, 이 고정화 thermolysin을 사용하여 연속적응유(連續的凝乳)를 행(行)하였다. Thermolysin의 고정화수율(固定化收率)은 25%이었다. 고정화 thermolysin은 1/200M $Ca^{++}\;ion$의 존재하에서 $60^{\circ}C$의 고온에서도 안정하였으며 이 온도에서의 half-life는 16일이었다. 원료 milk를 pH 7.0이 되도록 조정하여 $55^{\circ}C$로 유지된 고정화 thermolysin column을 통과 시 켜 분해시킨 후, Streptococcus cremoris를 접종하여 응유(凝乳)시켜 curd를 얻었으며, 이렇게 하므로써 미생물오염이 방지될 수 있었으며 연속적응유를 효과적으로 행할 수 있었다. 고정화 thermolysin을 사용하여 얻은 cheddar type의 cheese는 rennet을 사용한 전통적인 방법으로 만든 cheese 와 거의 비슷하였다.

  • PDF

Effect of Heat-Treat Methods on the Soluble Calcium Levels in the Commercial Milk Products

  • Yoo, Sung-Ho;Kang, Seung-Bum;Park, Jin-Ho;Lee, Kyung-Sang;Kim, Jin-Man;Yoon, Sung-Sik
    • 한국축산식품학회지
    • /
    • 제33권3호
    • /
    • pp.369-376
    • /
    • 2013
  • Milk is well known to be rich in some nutrients such as protein, calcium, phosphorus, and vitamins. In particular, absorption and bioavailability of calcium receive lots of attention because calcium is very little absorbed until it is changed to the ionized form in the intestine. In this study, concentration of the soluble calcium was determined in the commercial bovine milk products, which were processed by different heat-treatment methods for pasteurization. As for general constituents, lactose, fat, protein, and mineral were almost same in the liquid milk products by different processors. Ultrafiltration of the skimmed milk caused little change in the permeate as for lactose content but both fat and protein decreased. pH values ranges from 6.57-6.62 at room temperature and slightly increase after centrifugation, 10,000 g, 10 min. Rennet-coagulation activity was the lowest in the ultra high temperature (UHT-)milk compared to the low temperature long time (LTLT-) and high temperature short time (HTST-)milk products. Each bovine milk products contains 1056.5-1111.3 mg/kg of Ca. The content of sulfhydryl group was the lowest in raw milk compared to the commercial products tested. For the skimmed milks after ultrafiltration with a membrane (Mw cut-off, 3 Kd), soluble Ca in the raw milk was highest at 450.2 mg/kg, followed by LTLT-milk 336.4-345.1 mg/kg, HTST-milk 305.5-313.3 mg/kg, UHT-milk 370.3-380.2 mg/kg in the decreasing order. After secondary ultrafiltration with a membrane (Mw cut-off, 1 kD), total calcium in raw milk had a highest of 444.2 mg/kg, and those in the market milk products. As follow: UHT-milk, 371.3 to 378.2 mg/kg; LTLT-milk, 333.3 to 342.2 mg/kg; HTST-milk 301.9 to 311.2 mg/kg in a decreasing order.