• 제목/요약/키워드: Renewable source

검색결과 724건 처리시간 0.051초

영농형 태양광 경제성 제고를 위한 정책 방안 (Policy Directions to Enhance Economic Feasibility of Agrivoltaics in Korea)

  • 김종익;조상민
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.15-25
    • /
    • 2024
  • This study analyzes the economic feasibility of agrivoltaics in South Korea. The key findings are as follows. It was ascertained that an amendment to the Farmland Act, which currently has an 8-year permit period, is necessary to ensure the economic feasibility of agrivoltaic projects. Furthermore, economic feasibility improves when agrivoltaic projects are financed, as against cases without financing. Furthermore, the availability of low-interest loans through financial support programs significantly enhances economic feasibility. Scaling up projects leads to cost savings due to economies of scale, while community-based agrivoltaic initiatives generate higher revenue through the acquisition of additional Renewable Energy Certificates. These factors can help improve the economic feasibility of agrivoltaic projects. These incentives are emphasized as they can serve as a source of funding to foster community acceptance of agrivoltaic projects.

재생열에너지 경제성 분석: 균등화열생산비용(LCOH) (Economic Analysis of Renewable Heat Energy: Levelized Cost of Heat (LCOH))

  • 이재석;조일현
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.52-60
    • /
    • 2024
  • This study conducted an economic analysis of renewable heat energy by estimating the levelized cost of heat production (LCOH) of ST and GSHP and comparing it with the cost of alternative fuels. The LCOH of ST ranged from 396.8 KRW/kWh to 578.7 KRW/kWh (small-scale), 270.3 KRW/kWh to 393.3 KRW/kWh (large-scale), and 156.3 KRW/kWh to 220.7 KRW/kWh for GSHP. The economic feasibility of ST and GSHP was analyzed by comparing the calculated LCOH and the fuel costs such as gas and kerosene prices. Moreover, scenario analyses were conducted for installation subsidies under the current system to examine the changes in the economics of renewable thermal energy.

HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발 (Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source)

  • 신동철;전지환;박성진;이동명
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

공공의무화 제도에 따른 신재생에너지 보급 실태 분석 (The Supply Status Analysis of New Renewable Energy Based on Public Obligation System)

  • 서상현;이용호;김형진;조영흠;황정하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.220-225
    • /
    • 2011
  • Based on the supply status statistics of new renewable energy according to public obligation system, current status of overall application centered on solar heat, solar ray, and geothermal heat as energy sources that can be applied to buildings may be analyzed as follows. (1) After the public obligation system, the investment costs on the total construction costs by years were between 5.21% and 7.12%: they were 7.12% in 2004, where the system was initially implemented; and they were gradually declined from 2005 to 2011, 5.76% in average. The ratio of equipment investment per energy sources in the total construction costs was 5.9%, which was slightly more than the obliged ratio. The order of investment costs per energy source was solar ray, geothermal heat, and solar heat. (2) Among the 1,433 sites in the plan of new renewable energy installation based on the public obligation system, "for cultural & social use" was most in target institution, and facilities for education & research was most in use classification, followed by public working, culture & rally, and sports. The number of facilities applied according to the case for planning installation per use classification of the target institution was between 1.1 and 1.5, or 1.4 in average of energy source. Conclusively, the authors of this study investigated overall current status of new renewable energy supply from the analysis of statistic data, and it may be needed of further supplementation of various examinations by visiting investigation and interviews with practitioners based on classification of use of target institutions.

  • PDF

지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구 (Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device)

  • 김휘동;백남춘;이진국;신우철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

RETScreen을 활용한 건물에서의 지열 히트펌프 시스템 적용 사전 분석연구 (Pre-Analysis Study on Ground Source Heat Pump System in Building with RETScreen)

  • 김유진;이광섭;이의준;강은철
    • 한국태양에너지학회 논문집
    • /
    • 제40권2호
    • /
    • pp.1-10
    • /
    • 2020
  • Korea government published renewable energy obligation policy that public building must be supplied some part of total consumption energy (2019: 27%, 2020: 30%). RETScreen is freely available global energy tool that developed by Canadian National Energy Laboratory to quantify energy saving to compare conventional system. This program can be performed energy modeling, cost analysis, greenhouse gas emission analysis and financial analysis. In this study, GSHP (Ground source heat pump) heating and cooling system were studied for the energy deliverly and ROI (Return On Investment) in an office building. Three cases were studied according to the number of HP (Heat pump) units for the 1,000㎡ office building located in Daejeon. Results indicated that the energy delivery of the case 1 (1 HP unit) covered 57% of the office building heating and cooling energy consumption. The case 2 (2 HP units) covered 87.8% and the case 3 (3 HP units) covered 96.8% of the office building energy consumption. The ROI of the case 1 indicated 7.9 years. While 8.2 years for the case 2 and 9.7 years for the case 3.

공공건축물에 적용되는 신·재생에너지원의 새로운 보정계수 제안 (Proposal of New Correction Factors for New and Renewable Energy Sources in Public Building)

  • 김윤호;박윤하;원안나;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제36권6호
    • /
    • pp.13-24
    • /
    • 2016
  • The government introduced a mandatory installation system of new & renewable energy for public building to meet the target of greenhouse gas reduction and also suggest a correction factor for new renewable energy to expand the installation of various new & renewable energy systems. The introduction of correction factors, however, was followed by the reduction of installation size of new & renewable energy sources. Assuming that it was caused by a correction factor for each new renewable energy source calculated by the initial costs, this study proposed a new correction factor approach based on payback periods to reflect the technology element in the calculation process of correction factors additionally. The application results of new correction factors show that it was possible to do complex calculations including the economic and technological aspects to select a new & renewable energy system and that the installation size was also enlarged.

바이오매스 기반 전기에너지 생산기술 동향 분석 (Electrical Energy Production Using Biomass)

  • 이종서;한상수;김도연;김주현;박상진
    • 신재생에너지
    • /
    • 제19권1호
    • /
    • pp.12-21
    • /
    • 2023
  • Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

저온 열원 HFC-134a 유기랭킨사이클의 출력 극대화 (Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a)

  • 백영진;김민성;장기창;이영수;나호상
    • 대한기계학회논문집B
    • /
    • 제35권1호
    • /
    • pp.53-60
    • /
    • 2011
  • 본 연구에서는 지열발전 등과 같은 저온 열원을 에너지원으로 하는 발전에 응용될 수 있는 HFC-134a 유기랭킨사이클의 출력 극대화를 수행하였다. 기존의 연구와는 달리, 본 연구에서는 열교환기해석에 유한체적법을 적용함으로써 작동유체의 열전달 및 압력강하 특성을 고려하였다. 또한, 열원과 냉각수의 입구온도 및 유량, 그리고 사이클을 구성하는 열교환기들의 총 전열면적을 구속 조건으로 함으로써, 기존 연구들에 비해 보다 현실적인 결과를 얻을 수 있도록 하였다. 사이클의 출력은 3 개의 설계인자를 이용하여 최적화 하였다. 시뮬레이션 결과, 출력을 극대화 시킬 수 있는 설계인자들의 최적조합이 존재함을 보였다. 또한, 출력 향상을 위해서는 증발과정의 개선이 우선적으로 필요함을 보였다.