• Title/Summary/Keyword: Renewable generation

Search Result 1,207, Processing Time 0.025 seconds

Application the net metering system into self generation using renewable energies (신재생에너지 발전전원에 대한 Net Metering 시스템 적용방안)

  • Jo In Seung;Rhee Chang Ho;Lee Kuen Dae
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.734-736
    • /
    • 2004
  • The main objective of this study is to applicate net metering system in residential sector. The net metering system can be considered as a kind of tariff system suitable for self generation using renewable energies in our country.

  • PDF

전원개발 및 우선구매를 통한 대체발전 보급확대 방안

  • 이창호;박종진;이재훈
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2001.05a
    • /
    • pp.509-530
    • /
    • 2001
  • For the greenhouse 9as emissions' reduction of fossil fuel, the energy policy on the promotion of alternative energy should be implemented. Accordingly, national policies on the development and promotion of alternative energy were made, and related laws and regulations are being made, and comprehensive plans should be followed. The policies and strategies for promoting the renewable energy have been insufficient in comparison with those of the developed countries. This paper suggests the spread extension plan of renewable generation through generation development and priority purchase.

  • PDF

Control strategies of energy storage limiting intermittent output of solar power generation: Planning and evaluation for participation in electricity market

  • Sewan Heo;Jinsoo Han;Wan-Ki Park
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.636-649
    • /
    • 2023
  • Renewable energy generation cannot be consistently predicted or controlled. Therefore, it is currently not widely used in the electricity market, which requires dependable production. In this study, reliability- and variance-based controls of energy storage strategies are proposed to utilize renewable energy as a steady contributor to the electricity market. For reliability-based control, photovoltaic (PV) generation is assumed to be registered in the power generation plan. PV generation yields a reliable output using energy storage units to compensate for PV prediction errors. We also propose a runtime state-ofcharge management method for sustainable operations. With variance-based controls, changes in rapid power generation are limited through ramp rate control. This study introduces new reliability and variance indices as indicators for evaluating these strategies. The reliability index quantifies the degree to which the actual generation realizes the plan, and the variance index quantifies the degree of power change. The two strategies are verified based on simulations and experiments. The reliability index improved by 3.1 times on average over 21 days at a real power plant.

The Determinants of Acceptability in Renewable Energy (신재생에너지 발전시설의 입지수용성 결정요인에 관한 연구)

  • Ahn, Seong Shik;Jo, Dong Hyuk;Kwon, Hyeok Chae
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.107-123
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the determinants affecting acceptability in the construction projects of renewable energy generation facilities. Methods: This study used a method of conducting a survey of participants in the Renewable Energy construction project and verifying the hypothesis statistically. Results: The results of this study are as follows; First, Communication, participation and benefit recognition have a positive effect on mutual trust. Second, Benefit perception' has a positive effect on mutuality collaboration. Third, mutual trust have a positive effect on mutual collaboration. Fourth, mutual trust and mutual cooperation had a positive effect on. Finally, risk perception has a moderating effect on the relationship between mutual trust and acceptability, and the relationship between mutual collaboration and acceptability. Conclusion: This study suggests strategic directions for the success of the construction project for renewable energy generation facilities by identifying the determinants of availability.

Pre-Analysis CFD Simulation of Air Path Design for Soundproof Photovoltaic-Thermal Wall (방음벽 PVT의 공기유로 설계를 위한 CFD 시뮬레이션 사전 분석 연구)

  • Kim, Yu-Jin;Kim, Ki-Bong;Lee, Euy-Joon;Kang, Eun-Chul
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • The Korean government announced various energy policies, such as the to reduce 37% of the business-as-usual (BAU) greenhouse gas emissions by 2030. The policies aim to increase the renewable electricity generation ratio to 20% by 2030. PVT is a hybrid technology, which combines photovoltaic (PV) and solar collectors. It is capable of generating electricity and thermal energy simultaneously. It has a great potential to be used as a renewable and clean solar energy. However, there exists a shortage of space for the installation of PVT systems in Korea. To overcome this, in this paper proposes four types of soundproof wall PVT air channels, which were designed and optimized, based on the CFD (Computation Fluid Dynamic) analysis results. The thermal energy generation for multiple PVT units connected in series and pressure drop sensitivity were analyzed, depending on inlet velocity.

Compensation of Power Fluctuations of PV Generation System by SMES Based on Interleaving Technique

  • Kim, Seung-Tak;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1983-1988
    • /
    • 2015
  • This paper proposes the enhanced application of superconducting magnetic energy storage (SMES) for the effective compensation of power fluctuations based on the interleaving technique. With increases in demand for renewable energy based photovoltaic (PV) generation system, the output power fluctuations from PV generation system due to sudden changes in environmental conditions can cause serious problems such as grid voltage and frequency variations. To solve this problem, the SMES system is applied with its superior characteristics with respect to high power density, fast response for charge and discharge operations, system efficiency, etc. In particular, the compensation capability is effectively improved by the proposed interleaving technique based on its parallel structure. The dynamic performance of the system designed using the proposed method is evaluated with several case studies through time-domain simulations.

Design and Implementation of the Script-based EMS for Flexible Management of Stand-alone Microgrid (독립형 마이크로그리드의 유연한 운영을 위한 스크립트 기반 EMS 설계 및 구현)

  • Kim, Joon-Hyoung;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1231-1240
    • /
    • 2015
  • Nowadays, in islands where electricity should be provided autonomously, stand-alone microgrid technologies using renewable energy such as sunlight generation and wind power generation come into wide use. The microgrid electricity generation using renewable energy is greatly affected by the natural environment of a site. In order to maintain stable electricity supply for fluctuating electricity generation due to natural environment, the energy management via EMS is positively necessary. In existing stand-alone microgrid EMS, system operation logic is not changeable flexibly because compiled or builded codes are released into the EMS of a site, respectively. In this paper, we designed a flexible operating script-based microgrid EMS Framework for various sites and applied it to some island sites. We could confirm its usability.

Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

  • Sun, Wenjin;Jin, Xiang;Zhang, Li;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.849-859
    • /
    • 2017
  • This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency $f_{r2n}$ and the second series resonant frequency $f_{r3n}$ are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio $L_n$ and the normalized load Q. And it requires a smaller $L_n$ and Q to provide a sufficient voltage gain $M_{max}$ at ($V_{o\_max}$, $P_{o\_max}$). However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.

Development of Fuel Conditioning System for 30 kW-class LFG Gasturbine Power Generation (30kW급 LFG 가스터빈 발전용 연료화 정제시스템 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • Biogas is a carbon neutral energy and consists of mostly methane and carbon dioxide, with smaller amounts of water vapor, and trace amounts of $H_2S$, Siloxane and other impurities. Hydrogen sulfide and Siloxane usually must be removed before the gas can be used for generation of electricity or heat. The goals of this project are to develope the Fuel conditioning system of Land Fill Gas for 30kW-Micro Gas Turbine co-generation system. The fuel conditioning system mainly consists of $H_2S$ removal system, Land Fill Gas compressor, Siloxane removal system and many filtering systems. The fuel requirement of 30kW MGT is at least 32% of $CH_4$, $H_2S$ (<30 ppm), Siloxane (<5ppb) and supply pressure (> 0.6 MPa) from LFG compressor. Main mechnical charateristics of Micro Gas Turbine system by using LFG have the specific performance; 1) high speed turbine speed (96,000 rpm) 2) very clean emmission NOx (<9 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for LFG fuel conditioning system. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of Land Fill Gas (LFG), this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

The Study of Economic Feasibility of Wood Pellet in Domestic Power Plants Sector (국내 발전부문에서의 목재펠릿 경제성 연구)

  • Jeong, Nam-Young;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.251-257
    • /
    • 2010
  • Korea have a plan to enforce the Renewable Portfolio Standard(RPS) in 2012 for climate change action and effective use of energy but because of lack of renewable energy resources and limits of technology development, it will be hard to fullfill a target for RPS obligation in domestic power generation sector and woodchip biomass cofiring with coal combustion is the one of the alternative methods of the goal. Woodchip biomass cofiring with coal combustion is easy to approach technical design and has competitiveness of $CO_2$ & renewble energy certificate benefit and also has much lower generation cost than any other renewable energy resources. Because of that reason, woodchip biomass cofiring with coal combustion should be needed to fullfill the goal for RPS obligation in domestic power generation sector with midlong-term direction.