• Title/Summary/Keyword: Renewable distributed generation

Search Result 151, Processing Time 0.024 seconds

The Study on Permissible Capacity of Distributed Generation Considering Voltage Variation and Load Capacity at the LV Distribution Power System (전압변동과 부하량을 고려한 저압배전계통의 분산전원 설치용량 분석)

  • Moon, Won-Sik;Cho, Sung-Min;Shin, Hee-Sang;Lee, Hee-Tae;Han, Woon-Ki;Choo, Dong-Wook;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.100-105
    • /
    • 2010
  • This paper describes a capacity of distributed generation which will be interconnected at low voltage distribution systems. In order to set the capacity of distributed generation, a voltage variation of distribution system is considered. Besides, the capacity of distributed generation is classified according to a capacity of pole transformer and loads. The system constructions in this paper are analyzed by using PSCAD/EMTDC. In the immediate future, it is expected to increase the installation of New and renewable energy systems which are generally interconnected to distribution power systems in the form of distributed generations like photovoltaic system, wind power and fuel cell. So the study of this kind would be needed to limit the capacity of distributed generation.

A Study on Determining an Appropriate Power Trading Contracts to Promote Renewable Energy Systems

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • The renewable energy systems have been in the spotlight as an alternative for environmental issues. Therefore, the governmental policies are being implemented to spread of promote power generation system using renewable energy in various countries around the world. In addition, Korea has also developed a policy called the power trading contract which can profit from electricity produced from renewable power generation system through Korea Electric Power Corporation (KEPCO) and Korea Power Exchange (KPX). As a result, the power trading contracts can trade power after self-consuming in-house by using small-scale renewable power system for residential customers as well as electricity retailers. The power trading contracts applicable as a small-scale power system have a 'Net metering (NM)' and a 'Power Purchase Agreement (PPA)', and these two types of power trading contracts trade surplus power, but payment method of each power trading is different. The microgrid proposed in this paper is based on grid connected microgrid using Photovoltaic (PV) system and Energy Storage System (ESS), that supplied power to residential demand, we evaluate the operation cost of microgrid by power demand in each power trading contracts and propose the appropriate power trading contracts according to electricity demand.

Double-Input DC-DC Converter for Applications with Wide-Input-Voltage-Ranges

  • Hu, Renjun;Zeng, Jun;Liu, Junfeng;Yang, Jinming
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1619-1626
    • /
    • 2018
  • The output power of most facilities for renewable energy generation is unstable due to external environmental conditions. In distributed power systems with two or more sources, a stable output can be achieved with the complementary power supply among the different input sources. In this paper, a double-input DC-DC converter with a wide-input-voltage-range is proposed for renewable energy generation. This converter has the following advantages: the circuit is simple, and the input voltage range is wide and the fault tolerance is excellent. The operation modes and the steady-state analysis are examined. Finally, experimental results are illustrated to verify the correctness of the analysis and the feasibility of the proposed converter.

The Control of Z-Source Inverter for using DC Renewable Energy (직류 대체에너지 활용을 위한 Z-원 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.169-172
    • /
    • 2007
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter. Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead qf the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control. This system am be used for power conversion of DC renewable energy.

  • PDF

Compensation of Power Fluctuations of PV Generation System by SMES Based on Interleaving Technique

  • Kim, Seung-Tak;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1983-1988
    • /
    • 2015
  • This paper proposes the enhanced application of superconducting magnetic energy storage (SMES) for the effective compensation of power fluctuations based on the interleaving technique. With increases in demand for renewable energy based photovoltaic (PV) generation system, the output power fluctuations from PV generation system due to sudden changes in environmental conditions can cause serious problems such as grid voltage and frequency variations. To solve this problem, the SMES system is applied with its superior characteristics with respect to high power density, fast response for charge and discharge operations, system efficiency, etc. In particular, the compensation capability is effectively improved by the proposed interleaving technique based on its parallel structure. The dynamic performance of the system designed using the proposed method is evaluated with several case studies through time-domain simulations.

A Novel Anti-Islanding Method for Utility Interconnection of Distributed Power Generation Systems

  • In-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.217-224
    • /
    • 2004
  • A novel anti-islanding method for the distributed power generation system (DPGS) is proposed in this paper. Three different islanding scenarios are explored and presented based on the analysis of real and reactive power mismatch. It is shown via investigation that islanding voltage is a function of real power alone, where its frequency is a function of both real and reactive power. Following this analysis, a robust anti-islanding algorithm is developed. The proposed algorithm continuously perturbs ($\pm$5%) the reactive power supplied by the DPGS while simultaneously monitoring the utility voltage and frequency. In the event of islanding, a measurable frequency deviation takes place, upon which the real power of the DPGS is further reduced to 80%. A drop in voltage positively confirms islanding and the DPGS is then safely disconnected. This method of control is shown to be robust: it is able to detect islanding under resonant loads and is also fast acting (operable in one cycle). Possible islanding conditions are simulated and verified through analysis. Experimental results on a 0.5kW fuel cell system connected to a utility grid are discussed.

Analysis on the effect of harmonic loads on other loads in a distributed generation environment (분산전원 환경에서의 인근 수용가의 특정 수용가에 대한 고조파 영향 분석)

  • Song, Chong-Suk;Byeon, Gil-Sung;Hwang, Sung-Chul;Jang, Gil-Soo;Han, Woon-Ki;Park, Chan-Eom;Go, Won-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.398-399
    • /
    • 2011
  • In this paper, an analysis is being performed on the effect of harmonics on loads in a distributed generation environment which includes renewable energy sources such as wind farms. The paper will assess the limits of the harmonic content that is allowed to be present in the adjacent loads while conforming to the distributed generation connection standards. The analysis is being performed in PSCAD/EMTDC where field measurements of wind data is being employed for the study.

  • PDF

Fault location identification and protective coordination schemes presentation of distribution system interconnected Distributed Generation (분산전원이 연계된 배전계통의 사고지점 확인 및 보호협조 방안 제시)

  • Choi, Dong-Man;Choi, Joon-Ho;Ro, Kyoung-Soo;Moon, Seung-Il;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.313-315
    • /
    • 2005
  • Recently There has been growing interest in new renewable energy systems with high-energy efficiency due to the increasing energy consumption and environmental pollution problems. But an insertion of new distributed generation to existng power distribution systems can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power. This paper was applied to fault location defecting a method as each Relay sensing fault current value and carried out short-circuit analysis by MATLAB and PSCAD/EMTDC programs and identity the faulted section o f22.9[kV] distribution system interconnected a large number of distributed generation. The existing protection system of 22.9[kV] power distribution system analyzed and the study on protective coordination recloser and Sectionalzer accomplished

  • PDF

A Control and Protection Model for the Distributed Generation and Energy Storage Systems in Microgrids

  • Ballal, Makarand Sudhakar;Bhadane, Kishor V.;Moharil, Ravindra M.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.748-759
    • /
    • 2016
  • The microgrid concept is a promising approach for injecting clean, renewable, and reliable electricity into power systems. It can operate in both the grid-connected and the islanding mode. This paper addresses the two main challenges associated with the operation of a microgrid i.e. control and protection. A control strategy for inverter based distributed generation (DG) and an energy storage system (ESS) are proposed to control both the voltage and frequency during islanding operation. The protection scheme is proposed to protect the lines, DG and ESS. Further, the control scheme and the protection scheme are coordinated to avoid nuisance tripping of the DG, ESS and loads. The feasibility of the proposed method is verified by simulation and experimental results.

Efficiency Analysis of DC application on RES concentrated distribution system and utilization plan for ESS (신재생에너지 밀집 연계 배전망의 DC화에 따른 효율성 분석 및 ESS 활용방안 검토)

  • Ko, Bokyung;Song, Sungyoon;Shin, ByoungYoon;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.255-256
    • /
    • 2015
  • The increasing penetration of renewable energy based distributed generation(DG) sources in low-voltage grid feeders has been receiving increased attention. High penetration of renewable energy generation in a distribution system can cause power quality and efficiency problem. In this paper, the operating plan for ESS and the efficiency analysis on RES(Renewable energy source) concentrated distribution system.

  • PDF