• 제목/요약/키워드: Renewable Energy Systems

검색결과 898건 처리시간 0.033초

열응답 실험 해석 및 국내 현황 (Thermal Response Test (TRT) interpretation and the status in Korea)

  • 심병완;최충현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.168.2-168.2
    • /
    • 2010
  • The growing market for geothermal heat pump system requires great consideration of quality control and assurance in design and construction. The borehole heat exchanger of GHP system should be sustainable, economical and ecological. Thermal Response Test (TRT) is a useful method for site investigation to obtain reliable data for a optimal system design from the technical and economical aspect. Intensive researches combined with exchange of experiences on an international level within the IEA ECES Annex 21 improved the technology. Major subjects on the interpretation of TRT are development of improved evaluation models, evaluation of the TRT with respect to geological layers and investigation of the influence of ground water. Current status of TRT in South Korea, as well as a new version of the Korean TRT standard test procedure was presented. TRT is mostly used for governmental supported projects with corresponds to more than 100 GCHP systems per year. More than 200 tests are applied, mostly on single U-tube heat exchangers (about 95%). Bentonite is the most common grouting to be used. KIGAM (Korea Institute of Geoscience & Mineral Resources) is also keeping a GIS geological and geothermal database. In the institute also laboratory measurements of rock properties are carried out. About 90% of the laboratory measurements of the rock heat conductivity shows higher values than the in-situ TRT.

  • PDF

MCFC 전략제품 개발 (Development of new MCFC application products)

  • 황정태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.129.1-129.1
    • /
    • 2010
  • Since the commencement of the fuel cell business in 2007, POSCO POWER has been the major supplier of the MCFC (Molten Carbonate Fuel Cell), which is the most commercialized stationary fuel cell system in the world. With its quite, yet active movement, more than 20MW MCFC systems have been installed and are operating in Korea. While trying to localize the components and set up a firm supply chain in Korea to provide more reliable and cost-competitive products to its customers, POSCO POWER is also devoting itself to developing new MCFC application products. One such product is a back-up power system, in which a back-up algorithm is embedded to the present system so that the product can work as a back-up generator in case of grid failure. The technology to enhance load following capability of a stack module is also being developed with the back-up algorithm. Another example is a building application, the goal being to make the present Sub-MW product suitable for urban area. For this, downsizing and modularization are the main R&D scope. The project for developing ship service fuel cell for APU application will launch soon as well. In the project, a system which can operate in marine environment, and reforming technology for liquid logistic fuel will be developed.

  • PDF

스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구 (An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger)

  • 이상훈;최용석;안근묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

스프레이 증착법을 이용한 CdTe박막의 열처리에 따른 특성 분석 (Effect of thermal treatment on spray deposited CdTe thin films)

  • 이진영;황수연;이태진;류시옥
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • Polycrystalline CdTe thin films for solar cell continues to be a promising material for the development of cost effective and reliable photovoltaic processes. The two key advantages of this material are its high optical absorption coefficient and its near ideal band gap for photovoltaic conversion efficiency of 1.4-1.5 eV. In this study we made the CdTe thin films for solar cell application which was deposited on the glass substrates using a modified chemical spray method at low temperature. This process does not require the sophisticated and expensive vacuum systems. The prepared CdTe films were characterized with the aid of scanning electron microscope (SEM), UV-visible spectrophotometer, and X-ray diffraction spectrometer (XRD). Following are results of a study on the "Human Resource Development Center for Economic Region Leading Industry" Project, supported by the Ministry of Education, Science & Tehnology(MEST) and the National Research Foundation of Korea(NRF).

  • PDF

Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성 (Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst)

  • 박영수;김우현;길상인;윤진한;민태진;노선아
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

1kW급 고체산화물 연료전지 발전시스템 자열운전 (Self-sustainable Operation of a 1kW class SOFC System)

  • 이태희;최진혁;박태성;유영성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

신개념 하이브리드 동력장치 개발 (Development of a new hybrid power system)

  • 김남욱;윤영민;하승범;임원식;박영일;이장무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.533-536
    • /
    • 2005
  • In this paper, a new drive system(SHS) for hybrid electric vehicle is proposed. As dual rotor hybrid electric vehicle using planetary gearsets, the SHS has the advantages of both series and parallel systems. The output speed and torque of SHS can be determined at specific point regardless of the engine's operating point. When the size of generator which is used in SHS is same as in THS, the SHS has more activities of engine control due to the ability that is operated in lower speed range. To maximize the performance of system, we carried out optimization for the three parameters that are engine, motorl and motor2. As the result of the optimization, we confirmed the SHS is more preferable to THS in fuel consumption and acceleration area.

  • PDF

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

Analytical Discussion on Stochastic Hydrodynamic Modeling of Support Structure of HAWAII WTG Offshore Wind Turbine

  • Abaiee, M.M.;Ahmadi, A.;Ketabdari, M.J.
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권1호
    • /
    • pp.55-62
    • /
    • 2015
  • Floating structure such as tension leg platform, semi-submersible and spar are widely used in field of oil exploration and renewable energy system. All of these structures have the base cylinder support structure which have effective rule in overall dynamic of response. So the accurate and reliable modeling is needed for optimum design and understanding the physical background of these systems. The aim of this article is an analytical discussion on stochastic modeling of floating cylinder based support structure but an applicable one. Due to this a mathematical mass-damper-spring system of a floating cylinder of HAWAII WTG offshore wind as an applicable and innovative system is adopted to model a coupled degrees using random vibration in analytical way. A fully develop spectrum is adopted to solve the stochastic spectrum analytically by a proper approximation. Some acceptable assumption is adopted. The simplified but analytical and innovative hydrodynamic analysis of this study not only will help researcher to concentrate more physically on hydrodynamic analysis of floating structures but also can be useful for any quick, simplified and closed form analysis of a complicated problem in offshore engineering.

수상태양광발전시스템의 출력 특성 분석에 관한 연구 (A Study on the Analysis of the Output Characteristics of the Floating Photovoltaic System)

  • 최원용;이재형;좌성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.312-317
    • /
    • 2017
  • In this paper, the effects of environmental variables on the output of the floating photovoltaic water systems, which were installed at the Hapcheon dam in South Korea, were investigated, and the correlations between them were analyzed. The system output was linearly proportional to the solar radiation or irradiance. The output was large in spring and autumn because of high irradiance, but low in the summer when the solar module temperature was high. The influence of the module temperature on the system output was limited in the summer, during which the module temperature change affected the system output more than the change of the irradiance did. In addition, in winter and summer, the module temperature tended to decrease with increasing windspeed, but windspeed did not affect module temperature significantly in the spring and autumn. On the other hand, in winter and spring, the irradiance decreased as the windspeed increased because of movement (or circulation) of the photovoltaic modules.