• Title/Summary/Keyword: Renewable Energy Sources (RES)

Search Result 19, Processing Time 0.022 seconds

A Fault Analysis on AC Microgrid with Distributed Generations

  • Shin, Seong-Su;Oh, Joon-Seok;Jang, Su-Hyeong;Chae, Woo-Kyu;Park, Jong-Ho;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1600-1609
    • /
    • 2016
  • As the penetration of different types of renewable energy sources (RES) and energy storage systems (ESS) increases, the importance of stability in AC microgrid is being emphasized. Especially, RES and ESS which are operated using power electronics have difference in output characteristics according to control structures. When faults like single-line-to-ground fault or islanding operation occur, this means that a fault should be interpreted in different way. Therefore, it is necessary to analyze fault characteristics in AC microgrid in case of grid-connected mode and standalone mode. In this paper, the fault analysis for AC microgrid is carried out using PSCAD/EMTDC and an overvoltage problem and the countermeasures were proposed.

Study on Impact of Wind Power in Grid Frequency Quality of Stand-alone Microgrid (독립형 마이크로그리드내 풍력발전출력이 주파수 품질에 미치는 영향 분석)

  • Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.79-85
    • /
    • 2016
  • This paper analyzed the influence of wind power fluctuations in grid frequency of a stand-alone microgrid that is hybrid generation system with diesel generator, wind turbine, and Battery Energy Storage System (BESS). The existing island area power system consists of only diesel generators. So the grid frequency can be controllable from load change. But hybrid generation system with Renewable Energy Sources (RES) such as wind energy that has the intermittent output can bring power quality problems. BESS is one of the ways to improve the intermittent output of the RES. In this paper, we analyzed the role of BESS in a stand-alone microgrid. We designed a modelling of wind power system with squirrel-cage induction generator, diesel power system with synchronous generator, and BESS using transient analysis program PSCAD/EMTDC. And we analyzed the variation of the grid frequency according to the output of BESS.

Power Flow Control at the Subnetwork-Level in Microgrids

  • Liu, Kun;Khan, Muhammad Mansoor;Rana, Ahmad;Fei, Dong
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.588-603
    • /
    • 2018
  • This paper presents the idea of a smart load that can adjust the input power flow based on the intermittent power available from RESs (Renewable Energy Resources) to regulate the line voltage, and draw a constant power from the grid. To this effect, an innovative power flow controller is presented based on a Resistive ES (Electric Spring) in combination with a PEAT (Power Electronics based Adjustable Transformer), which can effectively shape the load power flow at the subnetwork level. With a PEAT incorporated in the step down transformer at the grid side, the proposed controller can supply non-critical loads through local RESs, and the critical loads can draw a relatively constant power from the grid. If there is an abundance of power produced by the RESs, the controller can supply both non-critical loads and critical loads through the RES, which significantly reduces the power demand from the grid. The principle, practicality, stability analysis, and controller design are presented. In addition, simulation results show that the power flow controller performs well in shaping the load power flow at the subnetwork level, which decreases the power demand on the grid. Experimental results are also provided to show that the controller can be realized.

Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector (도로운송부문용 에너지 공급 시스템 설계 및 경제성평가)

  • Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.164-173
    • /
    • 2015
  • This study aims to design energy supply systems from various energy sources for transportation sectors and comparatively analyze the life cycle cost of different scenario-based systems. For components of the proposed energy supply system, we consider a typical oil refinery, byproduct hydrogen system, renewable energy source (RES)-based electric generation system and existing electricity grid. We also include three types of vehicles in transportation sector such as internal combustion engine vehicle (ICEV), electric vehicle (EV), fuel cell vehicle (FCV). We then develop various energy supply scenarios which consist of such components and evaluate the economic performance of different systems from the viewpoint of life cycle cost. Finally we illustrate the applicability of the proposed framework by conducting the design problem of energy supply systems of Jeju, Korea. As the results of life cycle cost analysis, EV fueled by electricity from grid is the most economically feasible. In addition, we identify key parameters to contribute the total life cycle cost such as fuel cost, vehicle cost, infra cost and maintenance cost using sensitivity analysis.

Utilization of Energy Storage System based on the Assessment of Area of Severity in Islanded Microgrid

  • Lee, Kyebyung;Yoon, Minhan;Park, Chang-Hyun;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.569-575
    • /
    • 2017
  • This paper proposes a method to utilize an energy storage system (ESS) based on the assessment of an area of severity (AOS) to voltage sag. The AOS is defined as a set of the fault positions that can cause voltage sags at many buses simultaneously. The assessment of AOS helps to determine an optimal location of ESS installation to minimize the expected sag frequency (ESF) at concerned buses. The ESS has the ability not only to play traditionally known roles but also to mitigate voltage sag impact on renewable energy sources (RES) in the islanded microgrid. Accordingly, using the proposed method the ESS has additional features to prevent the operation failure of RESs and improve the stability of the microgrid. In order to verify the presented method, a case study was conducted on the sample microgrid system that is modified from an IEEE 57-bus system.

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

Applicability of a new tidal power system with reduced environmental impact (환경영향을 저감한 신형 조력발전기술 적용성 검토)

  • Park, Young Hyun;Youn, Daeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.112-117
    • /
    • 2017
  • Interest in the development of renewable energy sources has been increasing over the past 10 years and the west coast of Korea is one of the most favorable regions for tidal power. Barrage type tidal power is representative of the experience of installation and operation of such power sources for long periods. However, future projects for barrage type energy sources are either delayed or closed due to their environmental impact. For this reason, we applied a new tidal power technology with minimized environmental impact to a candidate area in the west coast and then analyzed its feasibility. The new tidal power technology is called Dynamic Tidal Power (DTP). Because its verification is impossible both in the laboratory and field, a numerical model is used for the evaluation of DTP. This new technology produces tidal power by means of the phase difference caused by diffraction on both sides of a dike built tens of km away from the coast. Because DTP is theoretically able to almost double the tidal range, it is expected to be applicable to even a small tidal area. Unlike the barrage type, it has the advantage of reducing the environmental impact by not enclosing the sea water. The west coast of Korea is close to the metropolitan area and has a high tidal range and, thus, it is thought to be a suitable candidate for tidal power.

Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System (30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구)

  • Ferreira, Marito;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2020
  • Recently, for the purposes of reducing carbon dioxide(CO2) emissions in the island area, countermeasures to decrease the operation rate of diesel generator(DG) and to increase one of renewable energy sources(RES) is being studied. In particular, the demonstration and installation of stand-alone micro-grid(MG) system which is composed of DG, RES and energy storage system(ESS) has been implemented in some island areas such as Gapa-do, Gasa-do and Ulleung-do island. However, many power quality(PQ) problems may be occurred due to an intermittent output of RES including photovoltaic(PV) system and wind power(WP) system in a normal operating of constant voltage & constant frequency(CVCF) inverter-based MG system. Therefore, this paper presents a modeling of the 30kW scale MG system using PSCAD/EMTDC, and also implements a 30kW scale CVCF inverter-based MG system as test devices to analyze normal operating characteristics of MG system. From the simulation and test results, it is confirmed that the proposed methods are useful and practical tools to improve PQ problems such as under-voltage, over-voltage and unbalanced load in CVCF inverter-based MG system.