• Title/Summary/Keyword: Renewable Energy Policy

Search Result 427, Processing Time 0.023 seconds

Evaluation algorithm for Hosting Capacity of PV System using LDC Method of Step Voltage Regulator in Distribution Systems (배전계통에 있어서 선로전압조정장치의 LDC방식에 의한 태양광전원의 수용성 향상 평가알고리즘)

  • Lee, Se-Yeon;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.20-28
    • /
    • 2020
  • According to the 3020 RE (renewable energy) policy of the Korean Government, distributed generators, including PV (photovoltaic) and WP (wind power) systems, have been installed and operated in distribution systems. On the other hand, if large-scale PV systems are interconnected in a distribution system, the spread of PV systems may be postponed due to a reduction of the hosting capacity in PV systems because of the over-voltage phenomena at the customer end by violating the allowable voltage limits. Under these circumstances, this paper proposes an evaluation algorithm of the hosting capacity of a PV system based on the LDC (line drop compensation) method of SVR (step voltage regulator) to improve the hosting capacity when large-scale PV systems are installed in a distribution system. Moreover, this paper presents a modeling of a complex distribution system, which is composed of a large-scale PV system and SVR with the LDC method using PSCAD/EMTDC. The simulation results confirmed that the proposed algorithm and modeling are useful and practical tools for improving the hosting capacity of a PV system because the customer voltages are maintained within the allowable voltage limits even if 6.5[MW] of the PV system is installed in a distribution system with the LDC method of SVR.

Non-linear Preferences on Bioethanol in South Korea (국내 바이오에탄올에 대한 비선형적 선호에 관한 연구)

  • Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.23 no.3
    • /
    • pp.515-551
    • /
    • 2014
  • Recently, there has been a debate as to whether bioethanol should replace some portion of gasoline for fuels in South Korea, as energy security as well as climate change issues are rising as a significant national agenda. However, a considerable amount of subsidy will be required to compensate for the higher price of bioethanol-blended gasoline. In this context, government subsidy will obtain justification only when the positive social gains from consuming bioethanol for fuels can exceed the negative social costs. Through a nation-wide choice experimental survey, we examine if South Koreans have a positive value as well as non-linear preferences on substituting bioethanol for gasoline. The results reveal that the willingness to pay for purely domestic bioethanol-blended gasoline within 10% is about 52 KRW; Koreans have concave preferences on the blending ratio of bioethanol to gasoline. The turning point of the blending ratio of bioethanol was 6.5%. Also, we found inverse U-shaped curve between income and bioethanol choice probability and the turning point of the income was calculated as 250~299million KRW. Politically conservative propensity advocates uses of bioethanol blended gasoline, but awareness on bioethanol or more weights on environmental conservation have significantly negative effects on the choice of bioethanol. However, the design of the survey questionnaire is incompatible with the RFS of Korea and assumes orthogonality among the following four interrelated attributes: (i) domestic or offshore procurement of feedstocks in the case of domestic production, (ii) domestic production or import of bioethanol, (iii) the blending ratios, and (iv) the retail price increases. In addition, the results of model estimation and of model selection test are not definite. Hence, the results in this study should not be directly applied to the design of the specifics of the Korean RFS. Hence, the results in this study require cautions in applying to the design of the Korean RFS policy.

The analysis of solar radiation to solar plant area based on UAV geospatial information system (UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • Recently the construction of solar plant showed a steady growth in influence of renewable energy policy. It is very important to determine the optimal location and aspect of solar panel using analyzed data of solar radiation to solar plant area beforehand. This study analyzed solar radiation in solar plant area using DEM acquired from UAV geospatial information. Mean solar radiation of 2017 was calculated as $1,474,466W/m^2$ and total solar radiation of 2017 considering solar plant area showed $33,639MW/m^2$ on analyzed result. It is important to analyze monthly solar radiation in aspect of maintenance works of solar plant. Monthly solar radiation of May to July was calculated over $160,000W/m^2$ and that of January to February and November to December showed under $80,000W/m^2$ in monthly solar radiation analysis of solar plant area. Also this study compared with solar radiation being calculated from UAV geospatial information and that of National Institute of Meteorological Sciences. And mean solar radiation of study area showed a little high in comparison with whole country data of National Institute of Meteorological Sciences, because the 93.7% of study area was composed of south aspect. Therefore this study can be applied to calculate solar radiation in new developed solar plant area very quickly using UAV.

A Study on Searching Algorithm for Malfunction Pattern of Protection Devices in Distribution System with PV Systems (태양광전원이 연계된 배전계통 보호협조기기의 부동작패턴 탐색알고리즘에 관한 연구)

  • Kwon, Soon-Hwan;Tae, Dong-Hyun;Lee, Hu-Dong;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.652-661
    • /
    • 2020
  • Recently, the Korean government developed the RE3020 (renewable energy) policy to overcome environmental problems, such as fine dust, climate change, and large-scale PV systems interconnected with a distribution system. When a large-scale PV system is interconnected in the distribution system, however, a malfunction can occur, and the protection devices may not be operated because of the dividing effect depending on the magnitude and direction of fault current as well as connection types and location of the PV system. Therefore, this paper proposes a search algorithm for the malfunction pattern of protection devices based on various scenarios, when large-scale PV systems are operated and interconnected in a distribution system. This paper presents a malfunction mechanism of protection devices according to the installation locations of recloser (R/C). Furthermore, the modeling of a distribution system with large-scale PV systems was performed using Off-DAS S/W, and the malfunction patterns of protection devices were analyzed based on a range of scenarios. From the simulation results with the proposed model and algorithm for searching for protection devices, it was confirmed that they are useful and effective in identifying a malfunction phenomenon depending on the installation location of the R/C and connection type of PV system.

Emergy Analysis Overview of Korea (한국의 자연환경과 경제에 대한 EMERGY분석)

  • ;Howard T. Odum
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.165-175
    • /
    • 1994
  • An emergy analysis of the main energy flows driving the economy of humans and life support systems was made including environmental energies, fuels, and imports, all expressed as solar emjoules. The total emergy use (4, 373 E20 sej/yr) is 90 per cent from imported sources, fuels and goods and services. The emergy flows from the environment are modest, because the share of global inputs such as ruin and geological uplift flux is modest. Consequently, the ratio of outside investment to attracting natural resources is already large, like other industrialized countries. The population level is already in excess of carrying capacity. The emergy use per person in Korea indicates a moderate emergy standard of living, even though the indigenous resource is very poor. If the present economy were running entirely on stored reserves of fuels, soils, woods, etc., it would last about 2 years. Its carrying capacity for steady state on its renewable sources is only 3.3 million people, compared to 43.3 million in 1991. Continued availability of foreign oil at a favorable balance of emergy trade, currently about 7 to 1 net emergy, is the basis for present economic activity and must decrease as the net emergy of foreign oil purchased goes down. Close economic integration with Middle East may determine how long this is possible in the future.

  • PDF

A study on solar radiation prediction using medium-range weather forecasts (중기예보를 이용한 태양광 일사량 예측 연구)

  • Sujin Park;Hyojeoung Kim;Sahm Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.49-62
    • /
    • 2023
  • Solar energy, which is rapidly increasing in proportion, is being continuously developed and invested. As the installation of new and renewable energy policy green new deal and home solar panels increases, the supply of solar energy in Korea is gradually expanding, and research on accurate demand prediction of power generation is actively underway. In addition, the importance of solar radiation prediction was identified in that solar radiation prediction is acting as a factor that most influences power generation demand prediction. In addition, this study can confirm the biggest difference in that it attempted to predict solar radiation using medium-term forecast weather data not used in previous studies. In this paper, we combined the multi-linear regression model, KNN, random fores, and SVR model and the clustering technique, K-means, to predict solar radiation by hour, by calculating the probability density function for each cluster. Before using medium-term forecast data, mean absolute error (MAE) and root mean squared error (RMSE) were used as indicators to compare model prediction results. The data were converted into daily data according to the medium-term forecast data format from March 1, 2017 to February 28, 2022. As a result of comparing the predictive performance of the model, the method showed the best performance by predicting daily solar radiation with random forest, classifying dates with similar climate factors, and calculating the probability density function of solar radiation by cluster. In addition, when the prediction results were checked after fitting the model to the medium-term forecast data using this methodology, it was confirmed that the prediction error increased by date. This seems to be due to a prediction error in the mid-term forecast weather data. In future studies, among the weather factors that can be used in the mid-term forecast data, studies that add exogenous variables such as precipitation or apply time series clustering techniques should be conducted.

A Study on the Power Supply and Demand Policy to Minimize Social Cost in Competitive Market (경쟁시장 하에서 사회적 비용을 고려한 전력수급정책 방향에 관한 연구)

  • Kwon, Byung-Hun;Song, Byung Gun;Kang, Seung-Jin
    • Environmental and Resource Economics Review
    • /
    • v.14 no.4
    • /
    • pp.817-838
    • /
    • 2005
  • In this paper, the resource adequacy as well as the optimum fuel mix is obtained by the following procedures. First, the regulation body, the government agency, determine the reliability index as well as the optimum portfolio of the fuel mix during the planning horizon. Here, the resources with the characteristics of public goods such as demand-side management, renewable resources are assigned in advance. Also, the optimum portfolio is determined by reflecting the economics, environmental characteristics, public acceptance, regional supply and demand, etc. Second, the government announces the required amount of each fuel-type new resources during the planning horizon and the market participants bid to the government based on their own estimated fixed cost. Here, the government announces the winners of the each auction by plant type and the guaranteed fixed cost is determined by the marginal auction price by plant type. Third, the energy market is run and the surplus of each plant except their cost (guaranteed fixed cost and operating cost) is withdrew by the regulatory body. Here, to induce the generators to reduce their operating cost some incentives for each generator is given based on their performance. The performance is determined by the mechanism of the performance-based regulation (PBR). Here the free-riding performance should be subtracted to guarantee the transparent competition. Although the suggested mechanism looks like very regulated one, it provides two mechanism of the competition. That is, one is in the resource construction auction and the other is in the energy spot market. Also the advantages of the proposed method are it guarantee the proper resource adequacy as well as the desired fuel mix. However, this mechanism should be sustained during the transient period of the deregulation only. Therefore, generation resource planning procedure and market mechanisms are suggested to minimize possible stranded costs.

  • PDF