• Title/Summary/Keyword: Rendezvous Point

Search Result 25, Processing Time 0.021 seconds

Fast Join Mechanism for Overlay Multicast (오버레이 멀티캐스트를 위한 패스트 조인 메커니즘에 대한 연구)

  • Lee, Jeong-Hoon;Park, Dae-Hyen;Kim, Young-Jun;Chong, Il-Young
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.193-194
    • /
    • 2007
  • We propose The Fast Join Mechanism for overlay multicast. This mechanism is provided with RP(Rendezvous Point), SM(Session Manager) and overlay multicast nodes. The RP provides data transfer to overlay multicast nodes and the Session Manager controls overlay multicast nodes to maintain the overlay topology.

  • PDF

Multicast Secure Architecture based on PIM-SM (소규모 멀티캐스트를 기반으로 한 멀티캐스트 보안구조)

  • 김성선;이상순;정영목
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.116-122
    • /
    • 2001
  • A conventional multicast secure protocol. MVMRP, CBT is designed for a large scaled r protocol so the PIM-SM (protect Independent Multicst-Sparse Mode) routing protocol which small number of clients, long distance path among the hosts and shortest path routing chara weak point of require it's own Core tree and re-keying when the traffic is pass through the ro In this study, proposes a architect for a licit information secure of join/leave to all the user or on-service user. With proposed architect, subgroups for multicast secure group mana will be divided by RP (Rendezvous-Point) unit and each RP has a subgroup manager. As a result, the transmitting time is shortened because there is no need to data translation by group key on data sending and the whole architecture size is samller than the other multicast secure architecture.

Shared Tree-based Multicast RP Re-Selection Scheme in High-Speed Internet Wide Area Network (고속 인터넷 환경에서 공유 트리 기반 멀티캐스트 RP 재선정 기법)

  • 이동림;윤찬현
    • The KIPS Transactions:PartC
    • /
    • v.8C no.1
    • /
    • pp.60-67
    • /
    • 2001
  • Multicast Protocol for multimedia service on the Internet can be classified into two types, e.g., source based tree and shared tree according to difference of tree construction method. Shared tree based multicast is known to show outstanding results in the aspect of scalability than source based tree. Generally, There have been lots of researches on the method to satisfy QoS constraints through proper Rendezvous Point (RP) in the shared tree. In addition, as the multicast group members join and leave dynamically in the service time, RP of the shared tree should b be reselected for guranteeing Qos to new member, But, RP reselection method has not been considered generally as the solution to satisfy QoS C constraints. In this paper, new initial RP selection and RP reselection method are proposed, which utilize RTCP (Real Time Control Protocol) report packet fields. Proposed initial RP selection and RP reselection method use RTCP protocol which underlying multimedia application service So, the proposed method does not need any special process for collecting network information to calculate RP. New initial RP selection method s shows better performance than random and topology based one by 40-50% in simulation. Also, RP reselection method improves delay p performance by 50% after initial RP selection according to the member’s dynamicity.

  • PDF

Community Model for Smart TV over the Top Services

  • Pandey, Suman;Won, Young Joon;Choi, Mi-Jung;Gil, Joon-Min
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.577-590
    • /
    • 2016
  • We studied the current state-of-the-art of Smart TV, the challenges and the drawbacks. Mainly we discussed the lack of end-to-end solution. We then illustrated the differences between Smart TV and IPTV from network service provider point of view. Unlike IPTV, viewer of Smart TV's over-the-top (OTT) services could be global, such as foreign nationals in a country or viewers having special viewing preferences. Those viewers are sparsely distributed. The existing TV service deployment models over Internet are not suitable for such viewers as they are based on content popularity, hence we propose a community based service deployment methodology with proactive content caching on rendezvous points (RPs). In our proposal, RPs are intermediate nodes responsible for caching routing and decision making. The viewer's community formation is based on geographical locations and similarity of their interests. The idea of using context information to do proactive caching is itself not new, but we combined this with "in network caching" mechanism of content centric network (CCN) architecture. We gauge the performance improvement achieved by a community model. The result shows that when the total numbers of requests are same; our model can have significantly better performance, especially for sparsely distributed communities.

A Method of Selecting Candidate Core for Shared-Based Tree Multicast Routing Protocol (공유기반 트리 멀티캐스트 라우팅 프로토콜을 위한 후보 코어 선택 방법)

  • Hwang Soon-Hwan;Youn Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1436-1442
    • /
    • 2004
  • A shared-based tree established by the Core Based Tree multicast routing protocol (CBT), the Protocol Independent Multicast Sparse-Mode(PIM-SM), or the Core-Manager based Multicast Routing(CMMR) is rooted at a center node called core or Rendezvous Point(RP). The routes from the core (or RP) to the members of the multicast group are shortest paths. The costs of the trees constructed based on the core and the packet delays are dependent on the location of the core. The location of the core may affect the cost and performance of the shared-based tree. In this paper, we propose three methods for selecting the set of candidate cores. The three proposed methods, namely, k-minimum average cost, k-maximum degree, k-maximum weight are compared with a method which select the candidate cores randomly. Three performance measures, namely, tree cost, mean packet delay, and maximum packet delay are considered. Our simulation results show that the three proposed methods produce lower tree cost, significantly lower mean packet delay and maximum packet delay than the method which selects the candidate cores randomly.

  • PDF