• Title/Summary/Keyword: Removal velocity

Search Result 487, Processing Time 0.026 seconds

Study on Solid-liquid Mixture Flow in Inclined Annulus (경사 환형관내 고-액 혼합 유동특성에 관한 연구)

  • Kim, Young-Ju;Kim, Young-Hun;Woo, Nam-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.15-20
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop Weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditiAn experimental study was carried out to study the solid-liquid mixture upward hydraulic transport of solid particles in vertical and inclined annuli with a rotating inner cylinder. The lift forces acting on a fluidized particle play a central role in many important applications such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport, the cleaning of particles from surfaces, etc. In this study a clear acrylic pipe was used to observe the movement of solid particles. Annular velocities varied from 0.4 to 1.2 m/s. The effect of the annulus inclination and drill pipe rotation on the carrying capacity of a drilling fluid, particle rising velocity, and pressure drop in a slim hole annulus were measured for fully-developed flows of water and aqueous solutions of CMC (sodium carboxymethyl cellulose) and bentonite. The rotation of the inner cylinder was efficient at carrying particles to some degree. For a higher particle volume concentration, the hydraulic pressure loss of the mixture flow increased because of the friction between the wall and solids or between solids.

The Continuous Pyrolysis of Waste Polystyrene using Wetted-Wall Type Reactor (Wetted-Wall Column 형 반응기를 이용한 폐 EPS 연속 열분해반응)

  • Han, Myung Sook;Han, Myung Wan;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.396-399
    • /
    • 2007
  • Organic residue and carbonized solid producing from the thermal degradation gave a influence on oil conversion, formation of styrene and side products such as ${\alpha}-methyl$ styrene, ethyl benzene, dimer. Thus, new reaction system using wetted-wall type reactor was proposed and examined on influence of various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimum condition were obtained from continuous thermal degradation using wetted-wall type reactor and styrene was continuously obtained as the yield up 65%.

Electro-mechanical impedance based strength monitoring technique for hydrating blended cements

  • Thirumalaiselvi, A.;Sasmal, Saptarshi
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.751-764
    • /
    • 2020
  • Real-time monitoring of stiffness and strength in cement based system has received significant attention in past few decades owing to the development of advanced techniques. Also, use of environment friendly supplementary cementitious materials (SCM) in cement, though gaining huge interest, severely affect the strength gain especially in early ages. Continuous monitoring of strength- and stiffness- gain using an efficient technique will systematically facilitate to choose the suitable time of removal of formwork for structures made with SCM incorporated concrete. This paper presents a technique for monitoring the strength and stiffness evolution in hydrating fly ash blended cement systems using electro-mechanical impedance (EMI) based technique. It is important to observe that the slower pozzolanic reactivity of fly ash blended cement systems could be effectively tracked using the evolution of equivalent local stiffness of the hydrating medium. Strength prediction models are proposed for estimating the strength and stiffness of the fly ash cement system, where curing age (in terms of hours/days) and the percentage replacement of cement by fly ash are the parameters. Evaluation of strength as obtained from EMI characteristics is validated with the results from destructive compression test and also compared with the same obtained from commonly used ultrasonic wave velocity (UPV). Statistical error indices indicate that the EMI technique is capable of predicting the strength of fly ash blended cement system more accurate than that from UPV. Further, the correlations between stiffness- and strength- gain over the time of hydration are also established. From the study, it is found that EMI based method can be effectively used for monitoring of strength gain in the fly ash incorporated cement system during hardening.

Design of gas suspension absorber to improve desulfurization efficiency

  • Hwang, Woohyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.189-195
    • /
    • 2020
  • In this study, the inlet duct and guide vane of the gas floating absorption tower were redesigned to improve the desulfurization efficiency so that the exhaust gas can be uniformly introduced into the absorption tower. In order to reduce the sulfur oxide pollutants among the main sources of air pollutants in industrial boilers, the existing equipment is redesigned and solved. For this purpose, change the exhaust gas, the slurry and recycling the adsorbent to improve the removal efficiency of SOx component in the exhaust gas inside the gas floating absorption tower so as to uniformly contact. And the initial design value and CFD value for the pressure loss from the boiler outlet to the gas floating absorption tower outlet are verified. Also, the velocity distribution of the exhaust gas, the concentration distribution of the recycled adsorbent, the liquid slurry behavior, and the pressure loss were compared. The results confirmed that the desulfurization efficiency was improved because the pressure loss from the boiler outlet to the absorption tower outlet was reduced and the deflection of the exhaust gas was minimized.

Determination of Biological kinetic Parameters for Pharmaceutical Wastewater (제약 폐수의 생물학적 동력학 계수 측정)

  • Lee Young-Rak;Choi Kwang-Keun;Lee Jin-Won
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.49-53
    • /
    • 2006
  • The aim of this research is to estimate the values of biological kinetic parameters of pharmaceutical wastewater for understanding biochemical properties. Maximum specific growth rate (${\mu}m$), yield coefficient (Y), and half-velocity coefficient (KS) were determined using oxygen uptake rate (OUR), and the results were 10.49/day (0.437/hr), 0.655, and 38.89 mg/L, respectively. Measured ${\mu}max$ by nonlinear regression of Monod equation was 10.63/day (or 0.443/hr), and this value was similar with above result. These parameters may be used to increase efficiency of pharmaceutical wastewater treatment and to determine amount of oxygen needed to removal BOD and dissolved oxygen in activated sludge process.

Design of Recycle Bubble Column Reactor for Continuous Enzymatic Hydrolysis of Cellulose (섬유소의 연속 효소 가수분해를 위한 순환식 기포탑 반응기의 설계)

  • 김춘영;홍석표정봉우이태원
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 1990
  • Enzymatic hydrolysis of insoluble cellulose was performed in a bubble column with tangential flow ulrafiltration membrane unit. The reactor was operated in a batch mode as well as semi-continuous and continuous with continuous removal of products through the tangential flow ultrafiltration membrane. The optimum superficial gas velocity was 1-3cm / sec so as to avoid bubble coalescence and enzyme denaturation. In continuous and selni-cotinuous process, the conversion was gradually increased but the total reduced sugar concentration was drcastically dereased with the dilution rate. It was concluded that the bubble column attaching tangential flow ultrafiltration membrane unit was effective on continuous hydrolysis of cellulose and recovery of enzyme.

  • PDF

The Study of Pyrolysis Characteristics of Dioxin Precursor Chlorophenol (다이옥신 전구물질인 Chlorophenol 의 열분해에 관한 연구)

  • Jeong, Tae-Seop;Kim, Jong-Guk;Kim, Kyoung-Soo;Yoon, Byeng-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.179-185
    • /
    • 2000
  • In this study, we examined the movement of chlorophenol as a precursor of the dioxin in the after-combustion to minimize the creation and emission of dioxin in a municipal waste incinerator. The CPs was injected to the electric incinerator in temperature $300{\sim}500^{\circ}C$, using $N_2$ gas to control the reaction time, The oxygen quantity supplied into the $CP_s's$ isomer combustion was added with the value of experience formula. When the space velocity in reactor was 60~80/sec, the removal efficiency of CP was obtained in the presence of Mo-V catalyst and non catalyst. The efficiency in non-catalyst was 74% to 80% mono-CP, di-CP 55~66%, tri-CP 50~58%, while mono-CP 90~99.9%, di-CP 96~97%, tri-CP 76~99% in a catalyst. Consequently, it was shown that these were 20~30% more efficienct than those.

  • PDF

A Study on Hydraulic Stability of Vegetation Mat Method on High Water Revetment (고수호안 식생매트공법의 수리적 안정성에 관한 연구)

  • Han, Eun-Jin;Hwang, Soo-Deok;Kim, Young-Do;Park, Jae-Hyun;Kim, Chul
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.75-89
    • /
    • 2010
  • The purpose of this study is to examine the hydraulic stability of the vegetation mat method on high water revetment. Recently, the river is managed not only for the flood control also for the environmental friendliness. For improving the environmental function of the river, the ecological river restoration projects are being performed. To ensure the stability of flood control, instead of removal of concrete revetment, the vegetation mat method has been widely used on the recovery soil. However, the recovery soil method often failed to be stable against the flood, which has caused the economic loss. In this study, the rate of soil loss is evaluated by the hydraulic experiments. Also, the velocity distribution on high water revetment is analyzed by both the hydraulic and numerical experiments.

A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building (건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구)

  • PARK, DONGHWAN;SOHN, YOUNG-JUN;CHOI, YOON-YOUNG;KIM, MINJIN;HONG, JONGSUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

Purification and Characterization of Metalloprotease from Serratia marcescens PPB-26 and Its Application for Detergent Additive

  • Thakur, Shikha;Sharma, Nirmal Kant;Thakur, Neerja;Bhalla, Tek Chand
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.259-268
    • /
    • 2019
  • In this study, the extracellular metalloprotease from Serratia marcescens PPB-26 was purified to homogeneity via ethanol fractionation and DEAE-cellulose column chromatography. Thus, a 3.8-fold purification was achieved with a 20% yield and specific activity of 76.2 U/mg. The purified protease was a 50-kDa monomer whose optimum pH and temperature for activity were 7.5 and $30^{\circ}C$ respectively; however, it was found to remain active in the 5-9 pH range and up to $40^{\circ}C$ for 6 h. The protease had a half-life of 15 days at $4^{\circ}C$, an optimum reaction time of 10 min, and an optimum substrate (casein) concentration of 0.25%. Furthermore, the Michaelis constant ($K_m$) and reaction velocity ($V_{max}$) of the protease were calculated to be 0.28% and $111.11{\mu}moles/(min{\cdot}mg)^{-1}$, respectively. The protease was stable when subjected to metal ions (2 mM), showing increased activity with most (especially $CoCl_2$ and $MgSO_4$ (30.54% increase)). It was also stable when exposed to oxidizing agents, bleaching agents, and detergents (5% v/v for 60 min). It retained 93% of its activity in non-ionic detergents (Tween-20, Tween-80, and Triton X-100). Moreover, wash performance analysis in commercial detergents (Ariel and Tide) showed that not only was the protease capable of protein stain removal, but also reduced cleaning time by 80% when added to detergents. Thus, the Serratia marcescens PPB-26 metalloprotease appears to be a promising new candidate as a laundry additive in the detergent industry.