• Title/Summary/Keyword: Removal capacity

Search Result 1,113, Processing Time 0.037 seconds

Some Physical Properties and Adsoptive Behaviors of Wood Charcoal Carbonized with Domestic wood (국산수종으로 탄화한 목탄의 물성 및 흡착성)

  • Jo, Tae-Su;Lee, Oh-Kyu;Ahn, Byung-Jun;Choi, Joon-Weon
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • Properties of wood charcoal made from the domestic wood species at $300-900^{\circ}C$ have investigated to understand the correlation between carbonization temperature and chemical and physical characteristics of wood charcoal. In terms of charcoal yield at particular carbonization temperatures, it was drastically decreased until the temperature reaches up to $600^{\circ}C$ and the decrease ratio of yield was reduced at higher temperatures. As the carbonization temperature increased, pH of the wood charcoal increased so that it became basic at last. The wood charcoal prepared at $600{\sim}700^{\circ}C$ showed the highest caloric value and those of wood charcoals made at higher temperature became plateau at a little lower level than the peak. The caloric value of Japanese larch charcoal was a bit higher than that of Red oak charcoal. The carbon content in the wood charcoal was increased as the carbonization temperature increased, whereas the hydrogen content was decreased. Specific surface area of the wood charcoal became larger with increase in temperature up to $600^{\circ}C$ but it was decreased or reduced in the increasing ratio after, and then it rose again at higher temperature than $800^{\circ}C$. Absorption capacity of the wood charcoal against iodine and gaseous acetic acid became greater as the carbonization temperature increased. Japanese larch charcoal presented higher absorption capacity than Red oak charcoal. As the above results, it is revealed that carbonization temperature affects the chemical and physical properties of wood charcoal. Therefore, to use wood charcoal with maximum effect it should be prepared at optimum temperature for proper use.

  • PDF

Characteristics of Heavy Metal Biosorption by Pseudomonas cepacia KH410 (Pseudomonas cepacia KH410의 중금속 흡착특성)

  • 박지원;김영희
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • An ubiquitous bacterium, Pseudomonar cepacia KH410 was isolated from fresh water plant root and identified. Adsorption of heavy metals of lead, cadmium and copper by this strain was investigated. Optimal conditions foradsorption was 1.0 dry g-biomass, at pH 4.0 and temperature of $40^{\circ}C$. Adsorption equilibrium reached max-imum after 120 min in 1000 mg/l metal solutions. The adsorption capacity (K) of lead was 5.6 times higher thancadmium and 4.0 times higher than that of copper. Adsorption of lead was applicable for Langmuir modelwhereas Freundlich model for cadmium and copper, respectively. Adsorption strength (1/n) of heavy metal ionswere in the order of lead>copper>cadmium. Uptake capacity of lead, cadmium and copper by dried cell was83.2,42.0,65.2 mg/g-biomass, respectively. Effective desorption was induced 0.1 M HCI for lead and 0.1 $HNO_3$ for cadmium and copper. Pretreatment to increase ion strength was the most effective with 0.1 M KOH.Uptake by immobilized cell was 77.8,58.5,71.2 mg/g-biomass for lead, cadmium and copper, respectively. Theimmobilized cell was more effective than ion exchange resin on removal of heavy metals in solution containinglight metals.

  • PDF

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping (백색목재부후균중 Biopulping에 이용가능한 선택적 리그닌분해균의 스크리닝)

  • Lee, Jong-Kyu;Oh, Eun-Sung
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.144-152
    • /
    • 1998
  • To obtain white rot fungi which have selective delignification capacity and can be used in biopulping processes, 94 different wood rotting fungi were screened and the capabilities of selected species were evaluated on deciduous and coniferous wood blocks. White rot fungi, first of all, were selected by simple enzyme tests, i.e., cellulase activity test; phenol oxidase activity test; laccase and peroxidase activity test. Most organisms that gave a positive Bavendamm gave a strongly positive laccase test with syringaldazine whereas most of those that gave a negative Bavendamm test also negative test for laccase and peroxidase, even if some exceptions were noted. Wood decay experiement were carried out to select fungal species with selective lignin-degrading ability by inoculating selected fungi to both wood blocks of Populus tomentiglandulosa and Larix leptolepis. After 12 weeks of incubation, weight losses, lignin losses, and morphological characteristics of the decayed wood were investigated. Almost all fungi tested caused 2 or more times of weight losses in P. tomentiglandulosa than in L. leptolepis, while no weight losses were detected from the un-inoculated wood blocks. Ceriporiopsis subvermispora and Phanerochaete chrysosporium were the best delignifiers for both hardwood and softwood. P. chrysosporium, however, was less effective than C. subvermispora. Bjerkandera adusta and two unidentified spp. caused delignification for only P. tomentiglandulosa. B. adusta caused simultaneous rot of all cell wall components, resulted in thinning of the secondary cell wall layers. Other fungi caused selective delignification resulting in the removal of lignin from middle lamella and separation of cells from each other.

  • PDF

Ammonia Adsorption Capacity of Zeolite X with Different Cations (Zeolite X의 양이온에 따른 암모니아 흡착 성능 연구)

  • Park, Joonwoo;Seo, Youngjoo;Ryu, Seung Hyeong;Kim, Shin Dong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.355-359
    • /
    • 2017
  • Zeolite X with Si/Al molar ratio = 1.08~1.20 was produced using a hydrothermal synthesis method. Ion-exchanged zeolite X samples were then prepared by using metal nitrate solutions containing $Mg^{2+}$ or $Cu^{2+}$. For all zeolite X samples, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to identify the change in crystal structure. The analysis of ammonia adsorption capability of zeolite X samples was conducted through the ammonia temperature-programmed desorption ($NH_3$-TPD) method. From XRD results, the prepared zeolite X samples maintained the Faujasite (FAU) structure regardless of cation contents in zeolite X, but the crystallinity of zeolite X containing $Mg^{2+}$ and $Cu^{2+}$ cations decreased. The distribution of cation contents in zeolite X was identified via EDS analysis. $NH_3$-TPD analysis showed that the $NH_3$ adsorption capacity of $Mg^{2+}$- and $Cu^{2+}$-zeolite X were 1.76 mmol/g and 2.35 mmol/g, respectively while the $Na^+$-zeolite X was 3.52 mmol/g ($NH_3/catalyst$). $Na^+$-zeolite X can thus be utilized as an adsorbent for the removal of ammonia in future.

Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea (비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향)

  • Park Maeng-Eon;Sung Kyu-Youl;Lee Minhee;Lee Pyeong-Koo;Kim Min-Chul
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.513-523
    • /
    • 2005
  • The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Dependence of 0.01 M CaCl2 Soluble Phosphorus upon Extractable P and P Sorptivity in Paddy Soil (논토양에서 유효인산 함량과 인산 흡수능에 따른 0.01 M CaCl2 가용 인산 농도 변화)

  • Jung, Beung-Gan;Yoon, Jung-Hui;Kim, Yoo-Hak;Kim, Seok-Hyeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.384-390
    • /
    • 2003
  • Removal of phosphate from soil by leaching, runoff, and plant uptake is strongly influenced by the content and absorption characteristics of P in soil. In this study the relationships between water soluble phosphate and phosphate retention capacity of the soil was investigated. Water soluble and available phosphate, and phosphate absorption characteristics of 35 paddy soils were measured during incubation at $25^{\circ}C$. Water soluble phosphate content was highly correlated with available phosphate content, phosphorus absorption capacity (PAC), and phosphate absorbed (PS) in air-dried and wet soils. The most significant relationship was found between water soluble phosphate and the ratio of available phosphate and phosphate sorbed, and the relationship $0.01M\;CaCl_2-P=0.0828$ (Av. $P_2O_5/PS$)+0.0374 could be suggested for the estimation of water soluble phosphate from soil phosphorus characteristics.

Decrease of PEMFC Performance by Toluene in Air (공기 중 톨루엔에 의한 고분자전해질연료전지의 성능감소)

  • Lee, Ho;Song, Jin-Hoon;Kim, Ki-Joong;Kim, Sae-Hoon;Ahn, Byung-Ki;Lim, Tae-Won;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • The contamination effect of toluene in the airstream on PEM fuel cell performance was studied with various toluene concentration under different operation conditions. And the recovery of the cell performance by applying clean air and the removal of toluene in the air by adsorption of active carbon were investigated. The toluene concentration range used in the experiments was from 0.1 ppm to 5.0 ppm. The performance degradation and recovery were measured by constant-current discharging and electrochemical impedance spectroscopy(EIS). Toluene adsorption capacity of KOH impregnated active carbon was obtained from the adsorption isotherm curve. The severity of the contamination increased with increasing toluene concentration, current density and air stoichiometry, but decrease with increasing relative humidity. The cell performance was recovered by toluene oxidation with oxygen and water in humidified neat air. EIS showed that the increase of charge transfer resistance due to toluene adsorption on Pt surface mainly reduced the performance of PEMFC. Toluene adsorption capacity of active carbon decreased as KOH weight increased in KOH impregnated active carbon.

The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method (펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성)

  • Seo, Seok-Ju;Na, So-Jeong;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.885-893
    • /
    • 2014
  • This research reports the enhanced Electrokinetic (EK) with $H_2O_2$ and sodium dodecyl surfate (SDS), which are commonly used in Fenton oxidation and soil flushing method, in order to remediate soil contaminated with heavy metals and Total Petroleum Hydrocarbons (TPH) simultaneously. In addition, influences of property of soil and concentration of chemical solution were investigated through experiments of different types of soils and varying concentration of chemical reagents. The results indicated, in the experiments using artificially contaminated soil, the highest removal efficiency of heavy metals using 10% $H_2O_2$ and 20mM SDS as electrolytes. However, in the experiments using Yong-San soils (study area), remediation efficiency of heavy metals was decreased because high acid buffering capacity. Through experiment of 20% $H_2O_2$ and 40mM SDS, increased electric current influences the remediation of heavy metals due to decrease in the soil pH. In the experiments of Yong-San soils, the remediation efficiency of TPH was decreased compared with artificially spiked soils because high acid buffering capacity and organic carbon contents. Furthermore, the scavenger effect of SDS influenced TPH oxidation efficiency under the conditions of injected 40mM SDS in the soils. Therefore, the property of soil and concentration of chemical reagents cause the electroosmotic flow, soil pH, remediation efficiency of heavy metals and TPH.

Performance of a Hollow Fiber Membrane Bioreactor for the Treatment of Gaseous Toluene (중공사막 결합형 생물반응기를 이용한 기체상 톨루엔 제거 특성 검토)

  • Son, Young-Gyu;Kim, Yong-Sik;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.886-891
    • /
    • 2005
  • In this study, a novel bioreactor system using a submerged hollow fiber membrane module (so called hollow fiber membrane bioreactor, HFMB) was applied to investigate feasibility and biodegradation capacity of the system for the treatment of gaseous toluene. First an abiotic test was conducted to determine the mass transfer coefficient, showing the value was similar to that obtained from a diffuser system using fine bubbles. Second, in the presence of toluene-degrading microorganisms, the HFMB was operated at different inlet toluene loading rates of 50, 100, $500\;g/m^3/hr$, and overall removal efficiencies were maintained in the range of $70{\sim}80%$. In addition, elimination capacities(EC) were increased up to $800\;g/m^3/hr$, which was substantially higher than maximum ECs for toluene reported in the biofiltration literature. Consequently, the HFMB was considered as an alternative method over other conventional VOC-treating technologies.