• Title/Summary/Keyword: Removal capacity

Search Result 1,109, Processing Time 0.025 seconds

Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines (정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구)

  • No, Sang-Ha
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.15-15
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic?iency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet?ween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr?ease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$$$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea?ses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin?ear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num?ber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco?very rates. The higher the rate of increase, the lower were the resulting head rice recoveries.

Mechanical and Operational Factors Affecting the Efficiency of Rice Polishing Machines (정미기의 능률에 미치는 기계적 요인및 작동조건에 관한 연구)

  • 노상하;최재갑
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-48
    • /
    • 1976
  • In analyzing the operational characteristics of a rice whitening machine, the internal radial pressure of the machine was measured using strain gage equipment. Changes in cylinder and feed screw configurations, screen type, cylinder speed and counter-pressure levels were examined to determine their impact on the quality and quantity of milled rice and the performance of the machine. The results are summarized as follows: 1. The internal radial pressure in the whitening chamber varied with the surface condition of the grain being processed. During the first or second pass through the machine, pressure was relatively low, reached a maximum after two to three passes with combinations I and II, three to six with combination III and then began to fall. 2. The pitch of the feed screw and the size of the feed gate opening which determine the rate of entry of grain into the whitening chamber, appeared to be the most important factor aff-::cting the degree of radial pressure, quality and quantity of milled rice and the efficiency of the machine. Using a feed screw with a wide pitch (4.8cm), radial pressure was relatively high and head rice recovery ratio \vere quite low. In this case capacity and machine effic\ulcorneriency were much higher than obtained when using a feed screw with a narrow pitch (2.3cm). Very significant responses in radial pressure, head rice recovery rates and machine capacity were observed with changes in cylinder speed and counter-pressure levels when using the wide pitch feed screw. 3. The characteristics of the screen which surrounds the whitening chamber had an important effect on whitening efficiency. The existence of small protuberances on the original screen resulted in significant increases in both machine capacity and efficiency but without a significant decrease in head rice recovery or development of excessive radial pressure. Further work is required to determine the effects of screen surface conditions and the shape of the cylinderical steel roller on the rate of bran removal, machine efficiency and recovery rates. The size of the slotted perforations 0:1 the screen affects total milled rice recovery. The opening size on the original screen was fabricated to accommodate the round shape of Japonica rice varieties but was not suitable for the more slender Indica type. Milling Indica varieties with this screen resulted in a reduction in total milled rice recovery. 4. An increase in cylinder speed from 380 to 820 rpm produced a positive effect on head rice recovery for all machine combinations at every level of counter-pressure used in the tests. Head rice recovery was considerably lower at 380rpm using a wide screw pitch when compared to the results obtained at speeds from 600 to 820 r.p.m. The effects of cylinder speed On radial pressure, capacity and machine efficiency showed contrasting results, depending on the width of the feed screw pitch. With a narrow feed screw pitch (2.3cm), a direct proportional relationship was observed bet\ulcornerween cylinder speed and both radial pressure and machine efficiency. In contrast, using a 4.8 centimeter pitch feed roller produced a series of inverse relationships between the above variables. Based on the results of this study it is recommended when milling Indica type long grain rice varieties that the cylinder speed of the original machine be increased from 500-600 rmp up to a minimum of 800 rpm to obtain a greater abrasive effect between the grain and the screen. The pitch of the feed screw should be also reduced to decr\ulcornerease the level of internal radial pressure and to obtain higher machine efficiency and increased quality of milled rice with increased cylinder speeds. Further study on the interaction between cylinder speed and feed screw pitch is recommended. 5. An increase in the counter pressure level produced a negative effect On the head rice recovery with an increase in radial pressure, capacity, and machine efficiency over all combinations and at every level of cylinder speed. 6. Head rice recovery rates were conditioned primarily by the pressure inside the whitening chamber. According to the empirical cha racteristics curve developed in this study, the relationships of head rice recovery ($Y_h$) and machine capacity ($Y_c$/TEX>) to internal radial pressure ($X_p$) followed an inverse quadratic function and a linear function respectively: $$Y_h^\Delta=\frac{1}{{1.4383-0.2951X_p^\ast+0.1425X_p^{\ast\ast}}^2} , (R^2=0.98)$$ $$Y_c^\Delta=-305.83+374.37X_p^{\ast\ast}, (R^2=0.88)$$ The correlation between capacity and power consumption per unit of brown rice expressed in the following exponential function: $$Y_c^\Delta=1.63Y_c^{-0.7786^\{\ast\ast}, (R^2=0.94)$$ These relationships indicate that when radial pressure increases above a certain range (1. 6 to 2.0 kg/$cm^2$ based On the results of the experiment) head ricerecovery decrea\ulcornerses in a quadratic relation with a inear increase in capacity but without any decrease in power consump tion per unit of brown rice. On the other hand, if radial pressure is below the range shown above, power consumption increases dramatically with a lin\ulcornerear decrease in capacity but without significant increases in head rice recovery. During the operation of a given whitening machine, the optimum radial pressure range or the correct capacity range should be selected by controlling the feed rate and/or counter-pressure keeping in mind the condition of the grain, particulary the hardness. It was observed that the total number of passes is related to radial pessure level, feed rate and counter-pressure level. The higher theradial pressure the fewer num\ulcornerber of pass required but with decreased head rice recovery. In particular, when using high feed rates, the total number of passes should be increased to more than three by reducing the counter-pressure level to avoid decreaseases in head rice recovery (less than 65 percent head rice recovery on the basis of brown rice) at every cylinder speed. 7. A rapid rise in grain temperature seemed to have a close relationship with the pressure generated inside the whitening chamber and, subsequently with head rice reco\ulcornervery rates. The higher the rate of increase, the lower were the resulting head rice recoveries.

  • PDF

Adsorption Characteristics of Oxyanions on Ferrihydrite and Mineral Phase Transformation (페리하이드라이트의 산화음이온 흡착 특성과 광물상 변화)

  • Gyure Kim;Yeongkyoo Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.301-310
    • /
    • 2023
  • Ferrihydrite is an iron oxide mineral that is easily found in the natural environment, including acid mine drainage, and has a low crystallinity and high specific surface area, resulting in high reactivity with other ions, and can remove environmentally hazardous substances. However, because ferrihydrite is a metastable mineral, there is a possibility of releasing adsorbed ions by phase transformation to other minerals having low surface area and high crystallinity. In this study, the adsorption characteristics of arsenate, chromate, and selenate on ferrihydrite and the oxyanion removal efficiency of ferrihydrite were studied considering mineral phase transformation. At both pH 4 and 8, the adsorption of oxyanions used in the study were in good agreement with both Langmuir and Freundlich adsorption models except for selenate at pH 8. Due to the difference in surface charge according to pH, at pH 4 a higher amount of ions were adsorbed than at pH 8. The adsorption amount were in the order of arsenate, chromate, and selenate. These different adsorption models and adsorption amounts were due to different adsorption mechanisms for each oxyanions on the surface of ferrihydrite. These adsorption characteristics were closely related to changes in the mineral phase. At pH 4, a phase transformation to goethite or hematite was observed, but only a phase transformation to hematite was observed at pH 8. Among the oxyanion species on ferrihydrite, arsenate showed the highest adsorption capacity and hardly caused phase transformation during the experimental period after adsorption. Contrary to this, chromate and selenate showed faster mineral phase transformation than arsenate, and selenate had the lowest retardation effect among the three oxyanions. Ferrihydrite can effectively remove arsenate due to its high adsorption capacity and low phase transformation rate. However, the removal efficiency for other two oxyanions were low by the low adsorption amount and additional mineral phase transformation. For chromate, the efficient removal is expected only at low concentrations in low pH environments.

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (II): Adsorption Properties of Heavy Metal Ions by Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (II): 국내산 제올라이트의 중금속 이온 흡착 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.201-213
    • /
    • 2003
  • The adsorption property and ability of domestic zeolites for some heavy metal ions (Ag, Pb, Cr, Cu, Zn, Mn), which may cause a serious environmental problem in industrial wastewater, were evaluated on ore unit through a series of adsorption experiments together with careful examinations of mineral composition and properties of the zeolites. Though the adsorption behavior basically took place in the form of a cation exchange reaction, the higher CEC value does not necessarily to imply the higher adsorption capacity for a specific heavy metal. A general trend of the adsorption selectivity for heavy metals in the zeolites is determined to be as follow: $Ag\geq$Pb>Cr,Cu$\geq$Zn>Mn, but the adsorption properties of heavy metal ions somewhat depend on the species and composition of zeolite. Clinoptilolite tends to adsorb selectively Cu in case of Cr and Cu, whereas heulandite prefers Cr to Cu. A dominant adsorption selectivity of the zeolite ores for Ag and Pb is generally conspicuous regardless of their zeolite species and composition. The zeolite ores exhibit a preferential adsorption especially for $Ag^{+}$ so as not to regenerate when treated with $Na^{+}$ . In the adsorption capacity for heavy meta ions, the zeolites differ in great depending on their species: ferrierite>clinoptilolite>heulandite. Considering the CEC value of mordenite, the mordenite-rich ore appears to be similar to the clinoptilolite ore in the adsorption capacity. The adsorption capacity for heavy metals is not positively proportional to the CEC values of the zeolites measured by the exchange reaction with ammonium ion. In addition, the adsorption capacity roughly tends to depend on the zeolite contents, i.e., the grade of zeolite ore, but the trend is not consistent at all in some ores. These may be caused by the adsorption selectivity for some specific heavy metals, the presence of possible stacking micro-faults and natural cations such as K hardly to exchange in the zeolite. Considering the economic availability and functional effectiveness as natural zeolite resources, clinoptilolite ores could be applicable to utilize the domestic zeolites for the removal of heavy metals.

Evaluation to Purification Capacity of Pollutants by Column Test with the tidal flat sediment (통수실험에 의한 갯벌의 오염물질 정화능력 평가)

  • Kim, Jong-Gu;You, Sun-Jae
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.223-228
    • /
    • 2000
  • The purpose of this study is to evaluate the purification capacity of pollutants by column test with the tidal flat sediment. Sediment materials were taken from Chunjangdae tidal flat which located in Chungnam Seochungun. The column tests were conducted on four conditions(R1 : raw sewage filtered by G2 filter, R2 : sterilized sewage after filtered by GF/C filter, R3 : R2 /filtered(membrane) seawater (1:1), R4 : R2 /filtered(membrane) seawater(1:2)). The results of this study may be summarized as followed ; The removed COD by column tests were increased according to increasing the quantity of sewage. During the column tests of 580min, the total removed ammonia nitrogen were 90.1mg for R1, 81.0mg for R2, 27.6mg for R3 and 4.1mg for R4. The result was similar to COD experiment. During the 580min, the total removed total-phosphates were 3.4mg for R1, 4.2mg for R2, 5.6mg for R3 and 2.0mg for R4. The removal efficiency of Pb and Cd for R3 and R4 reactor were higher than R1 and R2 reactor. The remove of heavy metal by the column test was high in sample with seawater. But in the initial 20min, the adsorbed Pb and Cd showed about 3% of the total adsorbed Pb and Cd during 580min.

  • PDF

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption (메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구)

  • Jeon, Junyeong;Cho, Yebin;Kim, Jongwook;Shin, Seung Gu;Jeon, Jong-Rok;Lee, Younki
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2021
  • Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.

Characterization and Feasibility Study of the Soil Washing Process Applying to the Soil Having High Uranium Concentration in Korea (우라늄 함량이 높은 국내 토양에 대한 토양학적 특성 규명 및 토양세척법의 적용성 평가)

  • Chang, See-Un;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.8-19
    • /
    • 2008
  • The physicochemical properties of soils having high uranium content, located around Duckpyungri in Korea, were investigated and the lab scale soil washing experiments to remove uranium from the soil were preformed with several washing solutions and on various washing conditions. SPLP (Synthetic Precipitation Leaching Procedure), TCLP (Toxicity Characteristic Leaching Procedure), and SEP (Sequential Extraction Procedure) for the soil were conducted and the uranium concentration of the extracted solution in SPLP was higher than Drinking Water Limit of USEPA (30 ${\mu}g$/L), suggesting that the continuous dissolution of uranium from soil by the weak acid rain may generate the environmental pollution around the research area. For the soil washing experiments, the uranium removal efficiency of pH 1 solution for S2 soil was about 80 %, but dramatically decreased as pH of solution was > 2, suggesting that strong acidic solutions are available to remove uranium from the soil. For solutions with 0.1M of HCl and 0.05 M of ${H_2}{SO_4}$, their removal efficiencies at 1 : 1 of soil vs. washing solution ratio were higher than 70%, but the removal efficiencies of acetic acid, and EDTA were below 30%. At 1 : 3 of soil vs. solution, the uranium removal efficiencies of 0.1M HCl, 0.05 M ${H_2}{SO_4}$, and 0.5M citric acid solution increased to 88%, 100%, and 61% respectively. On appropriate washing conditions for S2 soil such as 1 : 3 ratio for the soil vs. solution ratio, 30 minute for washing time, and 2 times continuous washing, TOC (Total Organic Contents) and CEC (Cation Exchange Capacity) for S2 soil were measured before/after soil washing and their XRD (X-Ray Diffraction) and XRF (X-Ray Fluorescence) results were also compared to investigate the change of soil properties after soil washing. TOC and CEC decreased by 55% and 66%, compared to those initial values of S2 soil, suggesting that the soil reclaimant may need to improve the washed soils for the cultivated plants. Results of XRF and XRD showed that the structural change of soil after soil washing was insignificant and the washed soil will be partially used for the further purpose.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment (해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용)

  • Kang, Ku;Kim, Young-Kee;Hong, Seong-Gu;Kim, Han-Joong;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.554-560
    • /
    • 2014
  • To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.