• Title/Summary/Keyword: Removal capacity

Search Result 1,113, Processing Time 0.026 seconds

Adsorption Characteristics of Multi-Metal Ions by Red Mud, Zeolite, Limestone, and Oyster Shell

  • Shin, Woo-Seok;Kang, Ku;Kim, Young-Kee
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In this study, the performances of various adsorbents-red mud, zeolite, limestone, and oyster shell-were investigated for the adsorption of multi-metal ions ($Cr^{3+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $As^{3+}$, $Cd^{2+}$, and $Pb^{2+}$) from aqueous solutions. The result of scanning electron microscopy analyses indicated that the some metal ions were adsorbed onto the surface of the media. Moreover, Fourier transform infrared spectroscopy analysis showed that the Si(Al)-O bond (red mud and zeolite) and C-O bond (limestone and oyster shell) might be involved in heavy metal adsorption. The changes in the pH of the aqueous solutions upon applying adsorbents were investigated and the adsorption kinetics of the metal ions on different adsorbents were simulated by pseudo-first-order and pseudo-second-order models. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact (except for $As^{3+}$). From the maximum capacity of the adsorption kinetic model, the removal of $Pb^{2+}$ and $Cu^{2+}$ were higher than for the other metal ions. Meanwhile, the reaction rate constants ($k_{1,2}$) indicated the slowest sorption in $As^{3+}$. The adsorption mechanisms of heavy metal ions were not only surface adsorption and ion exchange, but also surface precipitation. Based on the metal ions' adsorption efficiencies, red mud was found to be the most efficient of all the tested adsorbents. In addition, impurities in seawater did not lead to a significant decrease in the adsorption performance. It is concluded that red mud is a more economic high-performance alternative than the other tested adsorption materials for applying a removal of multi-metal in seawater.

Efficient aerobic denitrification in the treatment of leather industry wastewater containing high nitrogen concentration

  • Kang, Kyeong Hwan;Lee, Geon;Kim, Joong Kyun
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • To treat leather industry wastewater (LIW) containing high nitrogen concentration, eight aerobic denitrifiers were isolated from sludge existing in an LIW-treatment aeration tank. Among them, one strain named as KH8 had showed the great ability in denitrification under an aerobic condition, and it was identified as Pseudomonas aeruginosa R12. The aerobic denitrification ability of the strain KH8 was almost comparable to its anaerobic denitrification ability. In lab-scale aerobic denitrifications performed in 1-L five-neck flasks for 48 hr, denitrification efficiency was found to be much improved as the strain KH8 held a great majority in the seeded cells. From the nitrogen balance at the cell-combination ratio of 10:1 (the strain KH8 to the other seven isolates) within the seeded cells, the percentage of nitrogen loss during the aerobic denitrification process was estimated to be 58.4, which was presumed to be converted to $N_2$ gas. When these seeded cells with lactose were applied to plant-scale aeration tank for 56 day to treat high-strength nitrogen in LIW, the removal efficiencies of $COD_{Cr}$ and TN were achieved to be 97.0% and 89.8%, respectively. Under this treatment, the final water quality of the effluent leaving the treatment plant was good enough to meet the water-quality standards. Consequently, the isolated aerobic denitrifiers could be suitable for the additional requirement of nitrogen removal in a limited aeration-tank capacity. To the best of our knowledge, this is the first report of aerobic denitrifiers applied to plant-scale LIW treatment.

A Study on Ion Exchange Characteristics with Composition and Concentration of Electrolyte, Ratio of Ion Exchange Resin (전해질 성분 및 농도, 이온교환 수지 비율에 따른 이온교환 특성 연구)

  • Ahn Hyun-Kyoung;Rhee In-Hyoung;Yoon Hyoung-Jun;Jeong Hyun-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.727-732
    • /
    • 2006
  • The object of this study was to investigate the influence of composition and concentration of electrolyte, ratio of cation to anion exchange resin of mixed ion exchange column in the performance of ion exchange. Also this work examined the removal capability of suspended solids by ion exchange resin and the effect of particule on the characteristics of ion exchange. Breakthrough time was extended as the amount of ions and particles present in liquid was decreased. The case of anion, the breakthrough sequence is $Cl^{-}, but the case of cation, the breakthrough sequence is $Na^{+}. As for the ratio of cation to anion exchange resin of 1:2, the breakthrough time was prolonged compared with that of 1:1 and 1:3. For the electrolyte of equal concentration containing suspended solid, breakthrough time was contracted less than 20%. It results in the increase in the removal capacity of cation exchange resin. For the higher ratio of cation exchange resin, suspended solids are shorten the cation's breakthrough time so that the runtime of ion exchange resin tower is increased.

  • PDF

Removal, Recovery, and Process Development of Heavy Metal by Immobilized Biomass Methods (미생물 고정화법에 의한 중금속 제거, 회수 및 공정개발)

  • Ahn, Kab-Hwan;Shin, Yong-Kook;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 1997
  • Heavy metal adsorption by microbial cells is an alternative to conventional methods of heavy metal removal and recovery from metal-bearing wastewater The waste Sac-chuomyces cerevisiae is an inexpensive, relatively available source of biomass for heavy metal biosorption. Biosorption was investigated by free and immobilized-S. cerevisiae. The order of biosorption capacity was Pb>Cu>Cd with batch system. The biosorption parameters had been determined for Pb with free , cells according to the Freundlich and Langmuir model. It was found that the data fitted reasonably well to the Freundlich model. The selective uptake of immobilized-S. cerevisiae was observed when all the metal ions were dissolved in a mixed metals solution(Pb, Cu, Cr and Cd). The biosorption of mixed metals solution by immobilized-cell was studied in packed bed reactor. The Pb uptake was Investigated in particular, as it represents one of the most widely distributed heavy metals in water. We also tested the desorption of Pb from immobilized-cell by us- ing HCI, $H_2SO_4$ and EDTA.

  • PDF

Separation of Radiostrontium from Environmental Sample Using Strontim Selective Chromatographic Resin$(Sr.\;Spec^{TM})$ (스트론튬 선택적이온교환수지$(Sr.\;Spec^{TM})$를 이용한 환경시료중의 방사성 스트론튬의 분리)

  • Hong, Kwang-Hee;Lee, Chang-Woo;Choi, Yong-Ho;Lee, Myung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • Strontium selective chromatographic material $(Sr-Spec^{TM})$ was investigated for separation of radiostrontium from environmental soil and water sample. This chromatographic material has great capacity of binding of strontium ion in nitric acid media, and has selectivity to permit the separation of stontium from bulk amount of calcium. But the extraction of strontium was reduced by the other interfering ions such as K and Ba. So, in order to apply this material to the soil sample, prior removal treatment of K and Ba was needed. But the Sr-Spec material could provides simple and effective methods for the separation and removal of radiostrontium from liquid sample.

  • PDF

Comparative Study on Adsorptive Removal of Organic Sulfur Compounds over Cu-Exchanged NaY Zeolites (구리로 이온교환된 NaY 제올라이트에 의한 유기 황 화합물들의 흡착제거 비교연구)

  • Jung, Gap Soon;Lee, Suk Hee;Cheon, Jae Kee;Park, Dong Ho;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.534-539
    • /
    • 2010
  • The adsorptive removal of organic sulfur compounds including tert-butylmercaptane(TBM), tetrahydrothiophene(THT) and dimethylsulfide(DMS) in methane was investigated over NaY and copper-exchanged NaY(CuNaY) zeolites at 303 K and atmospheric pressure. In the ternary adsorption system, the preferential adsorption of THT over other sulfur compounds on NaY and the concurrent adsorption of all sulfur compounds on CuNaY were achieved, which could be explained by the breakthrough curve, the temperature-programmed desorption, and the apparent activation energy for desorption. The sulfur uptake capacity of CuNaY(2.90~3.20 mmol/g) was much higher than that of NaY(0.70~0.90 mmol/g). A comparative study indicated that the $Cu^{1+}$ sites and acidity of CuNaY were probably responsible for the strong interaction with sulfur atom and high sulfur uptake abilities.

Incremental filling ratio of pipe pile groups in sandy soil

  • Fattah, Mohammed Y.;Salim, Nahla M.;Al-Gharrawi, Asaad M.B.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.695-710
    • /
    • 2018
  • Formation of a soil plug in an open-ended pile is a very important factor in determining the pile behavior both during driving and during static loading. The degree of soil plugging can be represented by the incremental filling ratio (IFR) which is defined as the change in the plug length to the change of the pile embedment length. The experimental tests carried out in this research contain 138 tests that are divided as follows: 36 tests for single pile, 36 tests for pile group ($2{\times}1$), 36 tests for pile group ($2{\times}2$) and 30 pile group ($2{\times}3$). All tubular piles were tested using the poorly graded sand from the city of Karbala in Iraq. The sand was prepared at three different densities using a raining technique. Different parameters are considered such as method of installation, relative density, removal of soil plug with respect to length of plug and pile length to diameter ratio. The soil plug is removed using a new device which is manufactured to remove the soil column inside open pipe piles group installed using driving and pressing device. The principle of soil plug removal depends on suction of sand inside the pile. It was concluded that the incremental filling ratio (IFR) is changed with the changing of soil state and method of installation. For driven pipe pile group, the average IFR for piles in loose is 18% and 19.5% for L/D=12 and 15, respectively, while the average of IFR for driven piles in dense sand is 30% and 20% for L/D=12 and L/D=15 respectively. For pressed method of pile installation, the average IFR for group is zero for loose and medium sand and about 5% for dense sand. The group capacity increases with the increase of IFR. For driven pile with length of 450 mm, the average IFR % is about 30.3% in dense sand, 14% in medium and 18.3% for loose sand while when the length of pile is 300 mm, the percentage equals to 20%, 17% and 19.5%, respectively.

Removal and Inactivation of Human Immunodeficiency Virus(HIV-1) by Cold Ethanol Fractionation and Pasteurization during the Manufacturing of Albumin and Immunoglobulins from Human Plasma

  • Kim, In-Seop;Eo, Ho-Gueon;Park, Chan-Woo;Chong E. Chang;Lee, Soungmin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • Viral safety is a prerequisite for manufacturing clinical albumin and immunoglobulins from human plasma pools. This study was designed to evaluate the efficacy of cold ethanol fractionation and pasteurization (60$\^{C}$ heat treatment for 10h) for the removal/inactivation of human immunodeficiency virus type 1 (HIV-1) during the manufacturing of albumin and immunoglobulins. Samples from the relevant stages of the production process were spiked with HIV-1, and the amount of virus in each fraction was quantified by the 50% tissue culture infectious dose(TCID(sub)50). Both fraction IV fractionation and pasteurization steps during albumin processing were robust and effective in inactivating HIV-1, titers of which were reduced from an initial 8.5 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved were $\geq$ 4.5 and $\geq$ 6.5, respectively. In addition, fraction III fractionation and pasteurization during immunoglobulins processing were robust and effective in eliminating HIV-1. HIV-1 titers were reduced from an initial 7.3 log(sub)10 TCID(sub)50 to undetectable levels. The log reduction factors achieved in this case were $\geq$ 4.9 and $\geq$ 5.3, respectively. These results indicate that the process investigated for the production of albumin and immunoglobulins have sufficient HIV-1 reducing capacity to achieve a high margin of safety.

  • PDF

Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber (Acidithiobacillus ferrooxidans를 고정화한 생물반응기와 흡수탑을 이용한 고농도 황화수소 제거)

  • Ryu, Hui-Uk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • To treat a waste gas containing a high strength H2S, the two-stages microbial desulfurization process that conof a bioreactor immobilized with Acidithiobacillusferrooxidans and a chemical absorption scrubber has was proposed. After 4 times repeat of batch cultures, the immobilized bioreactor has been stabilized and the rate of iron oxidation reached 0.89 kg . $m^{-3}{\cdot}m^{-1}$ at steady state. The two-stages microbial desulfurization prowas able to be operated for a long term over 54 days. The removal efficiencies of H2S were 97-99% at a space velocity of 70 h-I and a inlet concentration of 37,000 ppmv. The maximum elimination capacity of H2S was approximately 3.3 kg S . $m^{-3}{\cdot}m^{-1}$. In the bioractor, the concentrations of the $Fe^{3+}$ and the immobilzed cell were constantly maintained during the desulfurization.

Improvement of Single Anaerobic Reactor for Effective Nitrogen Removal (효율적 질소제거를 위한 단일 혐기성반응조의 개선)

  • 한동준;류재근;임연택;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 1997
  • This research aims to remove nitrogen in the piggery wastewater by combined process with upflow anaerobic sludge blanket (UASB) and biofilm process. For the effective denitrification. anaerobic and anoxic reactors were connected to a reactor. The effluent of aerobix reactor was recycled equally with influent in the upper filter of anaerobic reactor for denitrification and outlet of UBF reactor was connected to the settling tank with $1.5{\;}{\ell}$ capacity and the settling sludge was repeatedly recycled to UASB zone. The organic loading rate of total reactor was operated from 0.4 to $3.1kgCOD/m^{3}/d$ and it was observed that the removal rate of TCOD was 80 to 95 percentage. Ammonia nitrogen was removed over 90 percentage in the less volumetric loading rate than $0.1{\;}kgN/m^{3}/d$. But because of non-limitation of organic materials, it was reduced to 70 percentage in the more volumetric loading rate than $0.6{\;}kgN/m^{3}/d$. But denitrification rate was observed 100 percentage in the all of loading rate. This is caused by the maintenance of optimum temperature, sufficient carbon source, and competition of electron acceptors. The results of COD mass balance at the $1.21{\;}kgCOD/m^{3}/d$ was observed with the 71.7% percentage of influent COD. It was revealed that the most part of organic materials was removed in the aerobic and the anaerobic reactor because 38.4 percentage was conversed into $CH_{4}$ gas and 11 percentage was removed in the aerobic reactor with cell synthesis and metabolism. Besides, 5.7% organics was used to denitrification reaction and 3.7% organics related to sulfate reduction.

  • PDF