• Title/Summary/Keyword: Remote sensing images

Search Result 1,721, Processing Time 0.034 seconds

Analysis on Technical Specification and Application for the Medium-Satellite Payload in Agriculture and Forestry (농림업 중형위성 탑재체 개발을 위한 기술 사양 및 활용 분석)

  • Kim, Bumseung;Kim, Hyeoncheol;Song, Kyoungmin;Hong, Sukyoung;Lee, Wookyung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.117-127
    • /
    • 2015
  • Recently, research and development on satellite payloads are being developed such as the optical sensor, SAR etc. Satellite image for earth observation is being utilized both domestically and abroad. Advanced satellite payload technology has led to the collection and analysis of satellite images relying on the optical sensor. Currently, related organizations such as RDA(the Rural Development Administration) are collectively collaborating to plan a national project to develop a medium-sized satellite based on Korea's domestic technology independently. This paper investigated the cases of the past research on application of satellite images for agriculture and analyzed the technical specifications for satellite payload in each area of such application. Based on the results of the past surveys and consultation studies among local experts in satellite image application, we analyzed the current trends, plans and applications of domestic and overseas R&D in satellite payloads for earth observation in agriculture, and proposed the appropriate technical specifications for developing a future medium-sized satellite for agriculture. The proposed specifications were then incorporated into a simulated satellite to examine its performance to observe the Korean farming areas. The authors anticipate that the findings of this paper will form a useful technical basis for providing the appropriate specifications for developing future medium-sized satellite payloads to be used in agriculture and forestry, and enabling the end users to efficiently utilize the satellite.

A Study on Local Three-Dimensional Visualization Methodology for Effective Analysis of Construction Environments in Extreme Cold Regions (효과적인 극한지 건설환경 분석을 위한 현지 3차원 가시화 방안 연구)

  • Kim, Eui Myoung;Lee, Woo Sik;Hong, Chang Hee
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.129-137
    • /
    • 2012
  • For construction project in extreme cold region, it is essential to establish basic data on the site such as topographical data from the early stage of construction of planning and designing, and it is needed to frequently perform site investigation when necessary. However, extreme cold regions are characteristic of being at long distance and difficult in approaching, and special regions such as Antarctica, in particular, are hard to conduct site investigation. Although a site investigation may be conducted, those who can visit Antarctica are sufficiently limited so that most of the staff may participate in construction without knowledge of the site and increase the risk of errors in decision making or designing. In order to resolve such problems, the authors in this study identified methods of building wide-area topographical data and bedrock classification data of exposed areas via remote sensing and of building precise topographical data on the construction site. Also, the authors attempted to present methods by which such data can be managed and visualized integrally via three-dimensional GIS technology and all the participants in construction can learn sense of field and conduct necessary analysis as frequent as possible. The areas around the Jangbogo Antarctic Station were selected to be the research area for conducting effective integrational management and three-dimensional visualization of various spatial data such as wide-area digital elevation model, ortho-images, bedrock classification data, local precise digital elevation model, and site images. The results of this study may enable construction firms to analyze local environments for construction whenever they need for construction in extreme cold regions and then support construction work including decision making or designing.

Response of Water Temperature in Korean Waters Caused by the Passage of Typhoons (태풍 이동 경로에 따른 한반도 연근해 수온의 반응)

  • Kim, Sang-Woo;Lim, Jin-Wook;Lee, Yoon;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.508-520
    • /
    • 2016
  • In this study, variations in water temperature after the passage of typhoons in Korean waters from 2009-2015 were analyzed. Sea surface temperature (SST) images derived from satellite remote sensing data were used, and water temperature information came from real-time mooring buoys at Yangyang, Gangneung, Samcheok and Yeoungdeok, while wind data was supplied by the Korea Meteorological Administration. Differences in SST observed before and after the passage of a typhoon using the SST images were found to be affected by wind direction as well as hot and cool seasonal tendencies. Coastal water temperatures of the eastern part of the Korean peninsula, located to the right of a typhoon, as in the case of typhoons Muifa, Chanhom, Nakri and Tembin, were lowered by a coastal upwelling system from southerly winds across the water's surface at depths of 15m and 25m. In particular, typhoons Chanhom and Tembin decreased water temperatures by about $8-11^{\circ}C$ and $16^{\circ}C$, respectively. However, temperatures to the left of the typhoons were increased by a downwelling of offshore seawater with a high temperature through the mid and lower seawater layers. After the passage of the typhoons, further mixing of seawater at a higher or lower temperature due to southerly or northerly winds, according to the context, lasted for 1-2 or 4 days, respectively.

Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Min, Byoung-keol;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.422-433
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.

Analyzing Characteristics of Forest Damage within the Geum-buk Mountain Range (금북정맥의 산림훼손 특성 분석)

  • Jang, Gab-Sue;Jeon, Seong-Woo;Kim, Sang-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.5
    • /
    • pp.55-63
    • /
    • 2008
  • The characteristics of forest damage in the Geum-buk Mountains were analyzed by using satellite images and a field survey for landscape conservation purposes. A survey scope was fixed using DEM, and areas of damage in the mountain range were analyzed via ArcMap v. 9.2 using SPOT 5 images, a high resolution satellite image. All damaged areas were reviewed and corrected in a field survey. As a result, 75 roads were found to completely fragment forest patches. Of those roads, 26 have the width under 3m, which means that the fragmentation of the forest by these roads may have a minor effect on forest habitat and its ecosystems, while other roads such as two-lane roads may have broader detrimental influences on the ecosystem. Two thousand eighty-three sections of accounted for a total area of about 5,760.7ha. Orchard areas including chestnut tree plantations were ranked as the largest in the damaged area within the Geum-buk Mountains, followed by public facility areas and grassland areas. This means that man-made land usage has progressed in the area regardless of slope and elevation.

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

The Analysis of Change Detection in Building Area Using CycleGAN-based Image Simulation (CycleGAN 기반 영상 모의를 적용한 건물지역 변화탐지 분석)

  • Jo, Su Min;Won, Taeyeon;Eo, Yang Dam;Lee, Seoungwoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.359-364
    • /
    • 2022
  • The change detection in remote sensing results in errors due to the camera's optical factors, seasonal factors, and land cover characteristics. The inclination of the building in the image was simulated according to the camera angle using the Cycle Generative Adversarial Network method, and the simulated image was used to contribute to the improvement of change detection accuracy. Based on CycleGAN, the inclination of the building was similarly simulated to the building in the other image based on the image of one of the two periods, and the error of the original image and the inclination of the building was compared and analyzed. The experimental data were taken at different times at different angles, and Kompsat-3A high-resolution satellite images including urban areas with dense buildings were used. As a result of the experiment, the number of incorrect detection pixels per building in the two images for the building area in the image was shown to be reduced by approximately 7 times from 12,632 in the original image and 1,730 in the CycleGAN-based simulation image. Therefore, it was confirmed that the proposed method can reduce detection errors due to the inclination of the building.

A Study on the Recovery Rate of Vegetation in Forest Fire Damage Areas Using Sentinel-2B Satellite Images (Sentinel-2B 위성 영상을 활용한 산불 피해지역 식생 회복률에 관한 연구)

  • Gumsung Cheon;Kwangil Cheon;Byung Bae Park
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.463-472
    • /
    • 2023
  • The amount of damage and the area of damage to forest fires are increasing globally, and the effectiveness analysis of the restoration method after the damage is performed insufficient. This study calculated the area of forest fire damage was calculated using Sentinel-2B satellite images and stack map and the intensity of forest fire damage is analyzed according to the forest type. In addition, the vegetation index was calculated using various wavelength bands. Based on the results, the vegetation resilience by the restoration method was quantitatively. As results, areas with a high proportion of coniferous forests suffered high intensity forest fire damage, and areas with a relatively high ratio of mixed and broad-leaved forests tended to have low forest fire damage. Also, artificial forests showed a recovery of about 92.7% compared to before forest fires and natural forests showed a recovery of about 99.6% from the result of analyzing vegetation resilience in artificial and natural forests after forest fires. Accordingly, it was confirmed that natural forests after forest fire damage had superior vegetation resilience compared to artificial forests. It can be proposed that this study is meaningful in providing important information for efficiently restoring the affected target site and the selection criteria for trees to reduce forest fire damage through the evaluation of vegetation resilience by the intensity of forest fire damage and restoration methods.

A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites (정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2013
  • The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.