• Title/Summary/Keyword: Remote sensing images

Search Result 1,721, Processing Time 0.033 seconds

Analysis of Forest Change Characteristics in North Korea using Multi-temporal Satellite Images (다시기 위성영상을 이용한 북한 전체의 산림 변화 특성 분석)

  • Lee, Hyoung-Kyu;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.633-638
    • /
    • 2018
  • We are constantly hearing about the seriousness of food shortages in North Korea through various media reports. Recently, the severity of the problem has increased, and international organizations and relief organizations have become increasingly concerned. Due to the shortage of food and firewood, residents illegally cut trees in the mountains and, as a result, North Korea has become the third fastest-growing area of forest degradation in Asia. However, since North Korea cannot directly measure the extent of forest degradation, remote sensing techniques using satellite imagery have to be applied. The purpose of this study was to analyze the characteristics of forest change in North Korea, in order to understand the severity of the forest degradation problem. For this purpose, Landsat 5 TM and Landsat 8 OLI TIRS satellite images were acquired and classified. As a result, it was found that the forests have turned into wilderness in the Nampo City and Pyongyang municipalities, while the wasteland has changed into forests in the north of Yanggangdo. In addition, the total forested area of the whole region decreased by $4,166.22km^2$, the residential area decreased by $2,017.03km^2$, and the amount of agricultural land increased by $6,625.74km^2$, which is similar to the amount of forested area lost, although the difference in the overall area of the forests between 2017 and 2006 was small.

The Analysis of 2001 Land Use Distribution of Daejeon Metropolitan City based on KOMPSAT-1 EOC Imagery (KOMPSAT-1 EOC 자료를 활용한 2001년도 대전시 토지이용 현황의 공간적 분포 분석)

  • Kim, Youn-Soo;Jeon, Gap-Ho;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.13-21
    • /
    • 2004
  • The dissemination of commercial satellite images. which have the high spatial resolution such as aerial photos, are the active trend in remote sensing community because of the recent development in satellite and sensor technology. Such high resolution satellite images provide a unique tool for the monitoring of ongoing urban land use change. Especially KOMPSAT-1, which was launched at December 1999 and successfully operated up to now, provides repeatedly panchromatic images over Korean peninsula, which has the spatial resolution of 6.6m. Based upon this KOMPSAT-1 EOC image data we can try to analyze and assess the temporal urban land use change, which could not be done because lack of such data. The aim of this paper is to analyze and assess the spatial land use characteristics of Daejeon Metropolitan City based on KOMPSAT-1 EOC data. The land use map of year 2001 is generated through the modification of the year 2000 land use map, which is published by National Geographic Information Institute, using visual interpretation of KOMPSAT-1 EOC image which is acquired in year 2001. This study can be the start point of the time series analysis of the long term land use change monitoring mit KOMPSAT-1 EOC data.

  • PDF

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

Analysis of the Effect of Learned Image Scale and Season on Accuracy in Vehicle Detection by Mask R-CNN (Mask R-CNN에 의한 자동차 탐지에서 학습 영상 화면 축척과 촬영계절이 정확도에 미치는 영향 분석)

  • Choi, Jooyoung;Won, Taeyeon;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • In order to improve the accuracy of the deep learning object detection technique, the effect of magnification rate conditions and seasonal factors on detection accuracy in aerial photographs and drone images was analyzed through experiments. Among the deep learning object detection techniques, Mask R-CNN, which shows fast learning speed and high accuracy, was used to detect the vehicle to be detected in pixel units. Through Seoul's aerial photo service, learning images were captured at different screen magnifications, and the accuracy was analyzed by learning each. According to the experimental results, the higher the magnification level, the higher the mAP average to 60%, 67%, and 75%. When the magnification rates of train and test data of the data set were alternately arranged, low magnification data was arranged as train data, and high magnification data was arranged as test data, showing a difference of more than 20% compared to the opposite case. And in the case of drone images with a seasonal difference with a time difference of 4 months, the results of learning the image data at the same period showed high accuracy with an average of 93%, confirming that seasonal differences also affect learning.

Changes in the Riverbed Landforms Due to the Artificial Regulation of Water Level in the Yeongsan River (인위적인 보 수위조절로 인한 영산강 하도 지형 변화)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • A river bed which is submerged in water at high flow and becomes part of the river at low flow, serves as a bridge between the river and the land. The channel bar creates a unique ecosystem with vegetation adapted to the particular environment and the water pool forms a wetland that plays a very important role in the environment. To evaluate anthropogenic impacts on the river bed in the Middle Yeongsangang River, the fluvial landforms in the stream channel were analyzed using multi-temporal remotely-sensed images. In the aerial photograph of 2005 taken before the construction of the large weirs, oxbow lakes, mid-channel bars, point bars, and natural wetlands between the artificial levees were identified. Multiple bars divided the flow of stream water to cause the braided pattern in a particular section. After the construction of the Seungchon weir, aerial photographs of 2013 and 2015 revealed that most of the fluvial landforms disappeared due to the dredging of its riverbed and water level control(maintenance at 7.5El.m). Sentinel-2 images were analyzed to identify differences between before and after the opening of weir gate. Change detection was performed with the near infrared and shortwave infrared spectral bands to effectively distinguish water surfaces from land. As a result, water surface area of the main stream of the Yeongsangang River decreased by 40% from 1.144km2 to 0.692km2. A large mid-channel bar that has been deposited upstream of the weir was exposed during low water levels, which shows the obvious influence of weir on the river bed. Newly formed unvegetated point bars that were deposited on the inside of a meander bend were identified from the remotely sensed images. As the maintenance period of the weir gate opening was extended, various habitats were created by creating pools and riffles around the channel bars. Considering the ecological and hydrological functions of the river bed, it is expected that the increase in bar areas through weir gate opening will reduce the artificial interference effect of the weir.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

MSC(Multi-Spectral Camera) 열제어 시스템 소개

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Jang, Young-Jun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • As a unique payload of Komsat-2, MSC, comprising EOS(Electro-Optical Sub-system), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Sub-system), is supposed to take pictures of one panchromatic and 4 multi-spectral image between wavelength 450mm~900mm, and is being under final Satellite I&T. It will perform the earth remote sensing with applications such as acquisition of high resolution images, surveillance of large scale disasters and its countermeasure, survey of natural resources, etc.. Under the hostile influence of the extreme space environmental conditions due to deep space and direct solar flux, the thermal design is especially of major importance in designing a payload. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy source on the spacecraft. This paper describes details of thermal control system for MSC.

  • PDF

Reversible Image Watermarking with Differential Histogram Shifting and Error Prediction Compensation (차이값 히스토그램 쉬프팅과 오류 예측 보정을 이용한 가역 영상 워터마킹)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun;Kim, Byeong-Man;Kim, Kyung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.417-429
    • /
    • 2010
  • Reversible watermarking inserts watermark into digital media in such a way that visual transparency is preserved and then enables to restore the original media from the marked one without any loss of media quality. This watermarking can be applied to quality-sensitive imaging such as medical imaging, military imaging, remote-sensing imaging, and precious artwork, where the original media should be preserved during image processing and analysis. In this paper, a reversible image watermarking technique that embeds message bits by modifying the differential histogram of adjacent pixels is presented. In order to satisfy both high embedding capacity and visual quality, the proposed technique exploits the fact that adjacent pixels in the image have highly spatial correlation. Also, we prevent overflow/underflow problem and salt-and-pepper artifacts by employing a predicted error compensation scheme. Through experiments using various test images, we prove that the presented technique provides perfect reversibility and high embedding capacity, while maintaining the induced-distortion low.

Satellite-based Hybrid Drought Assessment using Vegetation Drought Response Index in South Korea (VegDRI-SKorea) (식생가뭄반응지수 (VegDRI)를 활용한 위성영상 기반 가뭄 평가)

  • Nam, Won-Ho;Tadesse, Tsegaye;Wardlow, Brian D.;Jang, Min-Won;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • The development of drought index that provides detailed-spatial-resolution drought information is essential for improving drought planning and preparedness. The objective of this study was to develop the concept of using satellite-based hybrid drought index called the Vegetation Drought Response Index in South Korea (VegDRI-SKorea) that could improve spatial resolution for monitoring local and regional drought. The VegDRI-SKorea was developed using the Classification And Regression Trees (CART) algorithm based on remote sensing data such as Normalized Difference Vegetation Index (NDVI) from MODIS satellite images, climate drought indices such as Self Calibrating Palmer Drought Severity Index (SC-PDSI) and Standardized Precipitation Index (SPI), and the biophysical data such as land cover, eco region, and soil available water capacity. A case study has been done for the 2012 drought to evaluate the VegDRI-SKorea model for South Korea. The VegDRI-SKorea represented the drought areas from the end of May and to the severe drought at the end of June. Results show that the integration of satellite imageries and various associated data allows us to get improved both spatially and temporally drought information using a data mining technique and get better understanding of drought condition. In addition, VegDRI-SKorea is expected to contribute to monitor the current drought condition for evaluating local and regional drought risk assessment and assisting drought-related decision making.