• Title/Summary/Keyword: Remote sensing algorithm system

Search Result 235, Processing Time 0.025 seconds

Developing the Cloud Detection Algorithm for COMS Meteorolgical Data Processing System

  • Chung, Chu-Yong;Lee, Hee-Kyo;Ahn, Hyun-Jung;Ahn, Myoung-Hwan;Oh, Sung-Nam
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.367-372
    • /
    • 2006
  • Cloud detection algorithm is being developed as primary one of the 16 baseline products of CMDPS (COMS Meteorological Data Processing System), which is under development for the real-time application of data will be observed from COMS Meteorological Imager. For cloud detection from satellite data, we studied two different algorithms. One is threshold technique based algorithm, which is traditionally used, and another is artificial neural network model. MPEF scene analysis algorithm is the basic idea of threshold cloud detection algorithm, and some modifications are conducted for COMS. For the neural network, we selected MLP with back-propagation algorithm. Prototype software of each algorithm was completed and evaluated by using the MTSAT-IR and GOES-9 data. Currently the software codes are standardized using Fortran90 language. For the preparation as an operational algorithm, we will setup the validation strategy and tune up the algorithm continuously. This paper shows the outline of the two cloud detection algorithms and preliminary test results of both algorithms.

DEVELOPING THE CLOUD DETECTION ALGORITHM FOR COMS METEOROLOGICAL DATA PROCESSING SYSTEM

  • Chung, Chu-Yong;Lee, Hee-Kyo;Ahn, Hyun-Jung;Ahn, Hyoung-Hwan;Oh, Sung-Nam
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.200-203
    • /
    • 2006
  • Cloud detection algorithm is being developed as major one of the 16 baseline products of CMDPS (COMS Meteorological Data Processing System), which is under development for the real-time application of data will be observed from COMS Meteorological Imager. For cloud detection from satellite data, we studied two different algorithms. One is threshold technique based algorithm, which is traditionally used, and another is artificial neural network model. MPEF scene analysis algorithm is the basic idea of threshold cloud detection algorithm, and some modifications are conducted for COMS. For the neural network, we selected MLP with back-propagation algorithm. Prototype software of each algorithm was completed and evaluated by using the MTSAT-1R and GOES-9 data. Currently the software codes are standardized using Fortran90 language. For the preparation as an operational algorithm, we will setup the validation strategy and tune up the algorithm continuously. This paper shows the outline of the two cloud detection algorithm and preliminary test result of both algorithms.

  • PDF

Derivation of SST using MODIS direct broadcast data

  • Chung, Chu-Yong;Ahn, Myoung-Hwan;Koo, Ja-Min;Sohn, Eun-Ha;Chung, Hyo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.638-643
    • /
    • 2002
  • MODIS (MODerate-resolution Imaging Spectroradiometer) onboard the first Earth Observing System (EOS) satellite, Terra, was launched successfully at the end of 1999. The direct broadcast MODIS data has been received and utilized in Korea Meteorological Administration (KMA) since february 2001. This study introduces utilizations of this data, especially for the derivation of sea surface temperature (SST). To produce the MODIS SST operationally, we used a simple cloud mask algorithm and MCSST algorithm. By using a simple cloud mask algorithm and by assumption of NOAA daily SST as a true SST, a new set of MCSST coefficients was derived. And we tried to analyze the current NASA's PFSST and new MCSST algorithms by using the collocated buoy observation data. Although the number of collocated data was limited, both algorithms are highly correlated with the buoy SST, but somewhat bigger bias and RMS difference than we expected. And PFSST uniformly underestimated the SST. Through more analyzing the archived and future-received data, we plan to derive better MCSST coefficients and apply to MODIS data of Aqua that is the second EOS satellite. To use the MODIS standard cloud mask algorithm to get better SST coefficients is going to be prepared.

  • PDF

Parallel Fuzzy Inference Method for Large Volumes of Satellite Images

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 2001
  • In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.

  • PDF

Forest Fire Monitoring System Using Remote Sensing Data

  • Hwangbo, Ju-Won;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.747-749
    • /
    • 2003
  • For forest fire monitoring in relatively cool area like Siberia, design of Decision Support System (DSS) is proposed. The DSS is consisted of three different algorithms to detect potential fires from NOAA AVHRR image. The algorithm developed by CCRS (Canada Center for Remote Sensing) uses fixed thresholds for multi-channel information like one by ESA (European Space Agency). The algorithm of IGBP (International Geosphere Biosphere Program) involves contextual information in deriving fire pixels. CCRS and IGBP algorithms are rather liberal compared to more conservative ESA algorithm. Fire pixel information from the three algorithms is presented to the user. The user considers all these information in making decision about the location fire takes place.

  • PDF

A Study on the Application Technique and Integration of Remote Sensing and Geographic Information System (리모트센싱과 GIS의 통합 및 그 적용기법에 관한 연구)

  • 안철호;연상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.97-107
    • /
    • 1991
  • This paper was suggested the detailed methods on the integration of Remote Sensing and GIS for various application of two functions at the one system with making the most use of respective merits rather than make use of independent systems. It developed of algorithm about simultaneous overlay of raster and vector data for remote sensing and GIS for these objects. For test application on integration of remote sensing and GIS, it used of remote sensing data of satellite and used to topographic map of the same area for vector data acquisition of GIS application. For the practical application, it proved of effective value of integration of raster and vector data by present of useful technique with multilateral approach method through data conversion about thematic application for major application fields of remote sensing and GIS and it suggested that new application technique for integrated application of remote sensing GIS through synthetic situation analysis.

  • PDF

Development of Fast Side-impact Sensing Algorithm (고속 측면 충돌 감지 알고리즘의 개발)

  • 박서욱;김현태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Accident statistics shows that the portion of fatal occupant injuries due to side impacts is considerably high. The side impact usually leads to a severe intrusion of side structure into the passenger compartment. Furthermore, the safety zone for the side impact is relatively small compared to the front impact. Those kinds of physics for side impact frequently result in a fatal injury for the occupant. Therefore, NHTSA and EEVC are trying to intensify the regulation for the occupant protection against side impact. Both the regulation and recent market trends are asking for an installation of side airbag. There are several types of system configuration for side impact sensing. In this paper, we adopt the acceleration-based remote sensing method for the side airbag control system. We mainly focus on the development of hardware and crash discrimination algorithm of remote sensing unit. The crash discrimination algorithm needs fast decision of airbag firing especially for high-speed side impact such as FMVSS 214 and EEVC tests. It is also required to distinguish between low-speed fire and no-fire events. The algorithm should have a sufficient safety margin against any misuse situation such as hammer blow, door slam, etc. This paper introduces several firing criteria such as acceleration. velocity and energy criteria that use physical value proportional to crash severity. We have made a simulation program by using Matlab/Simulink to implement the proposed algorithm. We have conducted an algorithm calibration by using real crash data for 2,500cc vehicle. The crash performance obtained by the simulation was verified through a pulse injection method. It turned out that the results satisfied the system requirements well.

  • PDF

PROTOTYPE ALGORITHM OF RADIOMETRIC CALIBRATION FOR IR CHANNELS ON GOES-12

  • Chang Ki-Ho;Oh Tae-Hyung;Ahn Myung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.691-693
    • /
    • 2005
  • The prototype of the radiometric calibration algorithm, including the correction of scan mirror's angle, has been developed for the stationary meteorological sensor, firstly in Korea. We use this system on GOES-12 to evaluate two coefficients, slope and intercept. The evaluated coefficients show good agreement with the NESDIS's results for the five-case data. The calculated coefficients have been applied to the conversion from the measured counts to the radiance and the converting methods according to the scanning are investigated to enhance the radiometric accuracy.

  • PDF

A Study on the Retrieval Algorithms for Atmospheric Parameters from FORMOSAT-3/COSMIC Occultation Data

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Huang, Cheng-Yung;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.312-315
    • /
    • 2006
  • Radio occultation technique has been used in planetary science to obtain reliable and accurate temperature profiles of the other planets' atmosphere for decades. It relies on the fact that radio waves are bent and delayed due to the gradient of atmospheric refractivity along-ray-path. With the advent of Global Positioning System (GPS), it becomes possible to retrieve the refractivity and temperature profiles of the Earth's atmosphere from the occultation data. We have developed a retrieval algorithm and compared the results of our algorithm with the data of CHAMP to verify the accuracy of our algorithm is good enough. In our algorithm, there are some smoothing steps when retrieving. We analysis the data of FORMOSAT-3 and compare the results with and without smoothing and the results of TACC to see is there any phenomenon deleted after smoothing.

  • PDF

Radiometric Correction Algorithm for KITSAT-3 Images (우리별 3호 영상의 복사학적 보정 알고리즘)

  • Shin, Dongseok;Kwak, Sunghee;Kim, Tag-Gon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.2
    • /
    • pp.9-14
    • /
    • 1999
  • This paper describes an algorithm for the correction of major radiometric errors shown in MEIS (Multi-spectral Earth Imaging System) images on board KITSAT-3. MEIS images contain various radiometric errors as also shown in the images obtained from other remote sensing sensors. This paper introduces the two major radiometric error sources shown in MEIS images and the corresponding correction algorithm. The proposed algorithm was integrated to an operational preprocessing software and validated by applying the algorithm to several tens of MEIS images. This algorithm will therefore applied operationally to raw MEIS images before they are distributed to users.

  • PDF