• Title/Summary/Keyword: Remote Sensing.

Search Result 5,833, Processing Time 0.024 seconds

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.