• Title/Summary/Keyword: Remote Sensing Imagery

Search Result 822, Processing Time 0.025 seconds

Waterbody Detection from Sentinel-2 Images Using NDWI: A Case of Hwanggang Dam in North Korea (Sentinel-2 기반 NDWI를 이용한 수체 탐지 연구: 북한 황강댐을 사례로)

  • Kye, Changwoo;Shin, Dae-Kyu;Yi, Jonghyuk;Kim, Jingyeom
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1207-1214
    • /
    • 2021
  • In thisletter, we developed technology which can exclude effect of cloudsto perform remote waterbody detection based on Sentinel-2 optical satellite imagery to calculate the area of ungauged reservoirs and applied to the Hwanggang dam reservoir, a representative ungauged reservoir, to verify usability. The remote waterbody detection technology calculates the cloud blocking ratio by comparing the cloud boundary in the Sentinel-2 imagery and the reservoir boundary first. Next, itselects data whose cloud blocking ratio does not exceed a specific value and calculates NDWI (Normalized Difference Water Index) with selected imagery. In last, it calculatesthe area of the reservoir by counting the number of grids which have NDWI value considered as waterbody within the boundary of the target reservoir and correcting with cloud blocking ratio. To determine cloud blocking ratio threshold forselecting image, we performed the area calculation of Hwanggang dam reservoir from July 2018 to October 2021. As a result, when the cloud blocking ratio threshold wasset 10%, we confirmed that the result with large error due to clouds were filtered well and obtained 114 results that can show changes in Hwanggang dam reservoir area among 220 images.

Anomaly Detection from Hyperspectral Imagery using Transform-based Feature Selection and Local Spatial Auto-correlation Index (자료 변환 기반 특징 선택과 국소적 자기상관 지수를 이용한 초분광 영상의 이상값 탐지)

  • Park, No-Wook;Yoo, Hee-Young;Shin, Jung-Il;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.357-367
    • /
    • 2012
  • This paper presents a two-stage methodology for anomaly detection from hyperspectral imagery that consists of transform-based feature extraction and selection, and computation of a local spatial auto-correlation statistic. First, principal component transform and 3D wavelet transform are applied to reduce redundant spectral information from hyperspectral imagery. Then feature selection based on global skewness and the portion of highly skewed sub-areas is followed to find optimal features for anomaly detection. Finally, a local indicator of spatial association (LISA) statistic is computed to account for both spectral and spatial information unlike traditional anomaly detection methodology based only on spectral information. An experiment using airborne CASI imagery is carried out to illustrate the applicability of the proposed anomaly detection methodology. From the experiments, anomaly detection based on the LISA statistic linked with the selection of optimal features outperformed both the traditional RX detector which uses only spectral information, and the case using major principal components with large eigen-values. The combination of low- and high-frequency components by 3D wavelet transform showed the best detection capability, compared with the case using optimal features selected from principal components.

Satellite Remote Sensing for Forest Surveys and Management (산림조사(山林調査) 및 경영(經營)을 위(爲한) 위성원격탐사(衛星遠隔探査))

  • Choung, Song Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.1
    • /
    • pp.75-87
    • /
    • 1994
  • The states of development of remote sensing, GIS and forest management technology are such that new directions in forest surveys and management are possible. The technologies can not be considered separately. With the increasing power and decreasing cost of computer processing and the development of inexpensive mass storage media, digital remote sensing applications are becoming more practical. Powerful microcomputer-based image analysis systems and GIS are important advancements. As well, it is only a matter of time before the integration of remote sensing image analysis systems and GIS becomes transparent to the users. Implementation of operational applications by both centralized agencies and local units is, therefore, becoming practical. This paper discussed the state of remote sensing technology and its application to forest surveys and management. The relative advantages and disadvantages of readily available remote sensing products for regional biodiversity assessment were summarized. Discussion is limited to the sources of up-to-date imagery suitable for regional land use/cover mapping, specifically : LANDSAT MSS and TM, and SPOT.

  • PDF

National Disaster Scientific Investigation and Disaster Monitoring using Remote Sensing and Geo-information (원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링)

  • Kim, Seongsam;Kim, Jinyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.763-772
    • /
    • 2019
  • High-resolution satellites capable of observing the Earth periodically enhance applicability of remote sensing in the field of national disaster management from national disaster pre-monitoring to rapid recovery planning. The National Disaster Management Research Institute (NDMI) has been developed various satellite-based disaster management technologies and applied to disaster site operations related to typhoons and storms, droughts, heavy snowfall, ground displacement, heat wave, and heavy rainfall. Although the limitation of timely imaging of satellite is a challenging issue in emergent disaster situation, it can be solved through international cooperation to cope with global disasters led by domestic and international space development agencies and disaster organizations. This article of special issue deals with the scientific disaster management technologies using remote sensing and advanced equipments of NDMI in order to detect and monitor national disasters occurred by global abnormal climate change around the Korean Peninsula: satellite-based disaster monitoring technologies which can detect and monitor disaster in early stage and advanced investigation equipments which can collect high-quality geo-information data at disaster site.

The Potential of Satellite SAR Imagery for Mapping of Flood Inundation

  • Lee, Kyu-Sung;Hong, Chang-Hee;Kim, Yoon-Hyoung
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.128-133
    • /
    • 1998
  • To assess the flood damages and to provide necessary information for preventing future catastrophe, it is necessary to appraise the inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in southern part of Korea. JERS L-band SAR data obtained during the summer of 1997 were used to delineate the inundated areas. In addition, Landsat TM data were also used for analyzing the land cover condition before the flooding. Once the two data sets were co-registered, each data was separately classified. The water surface areas extracted from the SAR data and the land cover map generated using the TM data were overlaid to determine the flood inundated areas. Although manual interpretation of water surfaces from the SAR image seems rather simple, the computer classification of water body requires clear understanding of radar backscattering behavior on the earth's surfaces. It was found that some surface features, such as rice fields, runaway, and tidal flat, have very similar radar backscatter to water surface. Even though satellite SAR data have a great advantage over optical remote sensor data for obtaining imagery on time and would provide valuable information to analyze flood, it should be cautious to separate the exact areas of flood inundation from the similar features.

  • PDF

Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation (위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • Remotely sensed data provide valuable information on land monitoring due to multi-temporal observation over large areas. Especially, high resolution imagery with 0.6~1.0 m spatial resolutions contain a wealth of information and therefore are very useful for thematic mapping and monitoring change in urban areas. Recently, remote sensing technology has been successfully utilized for natural disaster monitoring such as forest fire, earthquake, and floods. In this paper, an efficient change detection method based on texture differences observed from high resolution multi-temporal data sets is proposed for mapping disaster damage and extracting damage information. It is composed of two parts: feature extraction and detection process. Timely and accurate information on disaster damage can provide an effective decision making and response related to damage.

A Study on Data Acquisition in the Invisible Zone of UAV through LTE Remote Control (LTE 원격관제를 통한 UAV의 비가시권 데이터 취득방안)

  • Jeong, HoHyun;Lee, Jaehee;Park, Seongjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.987-997
    • /
    • 2019
  • Recently the demand for drones is rapidly increasing, as developing Unmanned Aerial Vehicle (UAV) and growing interest in them. Compared to traditional satellite and aerial imagery, it can be used for various researches (environment, geographic information, ocean observation, and remote sensing) because it can be managed with low operating costs and effective data acquisition. However, there is a disadvantage in that only a small area is acquired compared to the satellite and an aircraft, which is a traditional remote sensing method, depending on the battery capacity of the UAV, and the distance limit between Ground Control System (GCS) and UAV. If remote control at long range is possible, the possibility of using UAV in the field of remote sensing can be increased. Therefore, there is a need for a communication network system capable of controlling regardless of the distance between the UAV and the GCS. The distance between UAV and GCS can be transmitted and received using simple radio devices (RF 2.4 GHz, 915 MHz, 433 MHz), which is limited to around 2 km. If the UAV can be managed simultaneously by improving the operating environment of the UAV using a Long-Term Evolution (LTE) communication network, it can make greater effects by converging with the existing industries. In this study, we performed the maximum straight-line distance 6.1 km, the test area 2.2 ㎢, and the total flight distance 41.75 km based on GCS through LTE communication. In addition, we analyzed the possibility of disconnected communication through the base station of LTE communication.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

L-band SAR Monitoring of Rice Crop Growth

  • Lee, Kyu-Sung;Hong, Chang-Hee
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.479-484
    • /
    • 1999
  • Rice crop has relatively short growing season during the summer in Korea and, therefore, it is often difficult to acquire cloud-free imagery on time. This study was attempt to define the temporal characteristics of radar backscattering observed from satellite L-band SAR data on different growing stages of rice crop. Six scenes of multi-temporal JERS SAR data were obtained from the transplanting season to the harvesting month of October. Six layers of multi-temporal SAR data were registered on a common geographic coordinate system. Using topographic maps, field collected data, and Landsat TM data, several sample rice fields were delineated from the imagery and their relative radar backscatters were calculated by using a set of reference targets. The temporal pattern of radar backscattering was very distinctive by the growing stage of rice crop. It was also separable between two types of rice fields having different cultivation practices. Considering the temporal characteristics of radar backscattering observed from the study, it is obvious that a certain date of the growing season can be more effective to delineate the exact area of the cultivated rice crop field.

  • PDF

Filtering and Segmentation of radar imagery

  • Kang, Sung-Chul;Kim, Young-seup;Yoon, Hong-Joo;Baek, Seung-Gyun
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.421-424
    • /
    • 1999
  • The purpose of this study is to demonstrate a variety of methods for reducing the speckle noise content of SAR images, whilst at the same time retaining the fined details and average radiometric properties of the original data. In order to increase the accuracy of classification, Two categories of filters are used (speckleblind(simple), Speckle aware(intelligent)) and Segmentation of highly speckled radar imagery is achieved by the use of the Gaussian Markov Random Field model(GMRF). The problems in applying filtering techniques to different object types are discussed and the GMRF procedure and efficiency of the segmentation also discussed.

  • PDF