• Title/Summary/Keyword: Remote Sensing Imagery

Search Result 822, Processing Time 0.034 seconds

Satellite Imagery based Winter Crop Classification Mapping using Hierarchica Classification (계층분류 기법을 이용한 위성영상 기반의 동계작물 구분도 작성)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Park, Jae-moon;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.677-687
    • /
    • 2017
  • In this paper, we propose the use of hierarchical classification for winter crop mapping based on satellite imagery. A hierarchical classification is a classifier that maps input data into defined subsumptive output categories. This classification method can reduce mixed pixel effects and improve classification performance. The methodology are illustrated focus on winter cropsin Gimje city, Jeonbuk with Landsat-8 imagery. First, agriculture fields were extracted from Landsat-8 imagery using Smart Farm Map. And then winter crop fields were extracted from agriculture fields using temporal Normalized Difference Vegetation Index (NDVI). Finally, winter crop fields were then classified into wheat, barley, IRG, whole crop barley and mixed crop fields using signature from Unmanned Aerial Vehicle (UAV). The results indicate that hierarchical classifier could effectively identify winter crop fields with an overall classification accuracy of 98.99%. Thus, it is expected that the proposed classification method would be effectively used for crop mapping.

Image Registration of Cloudy Pushbroom Scanner Images (구름을 포함한 푸쉬브룸 스캐너 영상의 밴드간 상호등록)

  • Lee, Won-Hee;Yu, Su-Hong;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • Since PAN(panchromatic) and MS(multispectral) imagery of pushbroom scanner have the offset between PAN and MS CCD(charge coupled device) in the focal plane, PAN and MS images are acquired at different time and angle. Since clouds are fast moving objects, they should lead mis-registration problem with wrong matching points on clouds. The registration of cloudy imagery to recognize and remove the contamination of clouds can be categorized into three classes: (1) cloud is considered as nose and removed (2) employing multi-spectral imagery (3) using multi-temporal imagery. In this paper, method (1) and (3) are implemented and analysed with cloudy pushbroom scanner images.

Assessment of Trophic State for Yongdam Reservoir Using Satellite Imagery Data (인공위성 영상자료를 이용한 용담호의 영양상태 평가)

  • Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • The conventional water quality measurements by point sampling provide only site specific temporal water quality information but not the synoptic geographic coverage of water quality distribution. To circumvent these limitations in temporal and spatial measurements, the use of remote sensing is increasingly involved in the water quality monitoring research. In other to assess a trophic state of Yongdam reservoir using satellite imagery data, I obtained Landsat ETM data and water quality data on 16th September and 18th October 2001. The approach involved acquisition of water quality samples from boats at 33 sites on 16th September and 30 sites on 18th October 2001, simultaneous with Landsat-7 satellite overpass. The correlation coefficients between the DN values of the imagery and the concentrations of chlorophyll-a were analyzed. The visible bands(band 1,2,3) and near infrared band(band 4) data of September image showed the correlation coefficient values higher than 0.9. The October image showed the correlation coefficient values about 0.7 due to the atmospheric effect and low variation of chlorophyll-a concentration. Regression models between the chrophyll-a concentration and DN values of the Landsat imagery data have been developed for each image. The regression model was determined based on the spectral characteristics of chlorophyll, so the green band(band 2) and near infrared band(band 4) were selected to generate a trophic state map. The coefficient of determination(R2) of the regression model for 16th September was 0.95 and that of the regression model for 18th October was 0.55. According to the trophic state map made based on Aizaki's TSI and chlorophyll-a concentration, the trophic state of Yongdam reservoir was mostly eutrophic state during this study.

A New True Ortho-photo Generation Algorithm for High Resolution Satellite Imagery

  • Bang, Ki-In;Kim, Chang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.347-359
    • /
    • 2010
  • Ortho-photos provide valuable spatial and spectral information for various Geographic Information System (GIS) and mapping applications. The absence of relief displacement and the uniform scale in ortho-photos enable interested users to measure distances, compute areas, derive geographic locations, and quantify changes. Differential rectification has traditionally been used for ortho-photo generation. However, differential rectification produces serious problems (in the form of ghost images) when dealing with large scale imagery over urban areas. To avoid these artifacts, true ortho-photo generation techniques have been devised to remove ghost images through visibility analysis and occlusion detection. So far, the Z-buffer method has been one of the most popular methods for true ortho-photo generation. However, it is quite sensitive to the relationship between the cell size of the Digital Surface Model (DSM) and the Ground Sampling Distance (GSD) of the imaging sensor. Another critical issue of true ortho-photo generation using high resolution satellite imagery is the scan line search. In other words, the perspective center corresponding to each ground point should be identified since we are dealing with a line camera. This paper introduces alternative methodology for true ortho-photo generation that circumvents the drawbacks of the Z-buffer technique and the existing scan line search methods. The experiments using real data are carried out while comparing the performance of the proposed and the existing methods through qualitative and quantitative evaluations and computational efficiency. The experimental analysis proved that the proposed method provided the best success ratio of the occlusion detection and had reasonable processing time compared to all other true ortho-photo generation methods tested in this paper.

Classification of Forest Type Using High Resolution Imagery of Satellite IKONOS (고해상도 IKONOS 위성영상을 이용한 임상분류)

  • 정기현;이우균;이준학;김권혁;이승호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2001
  • This study was carried out to evaluate high resolution satellite imagery of IKONOS for classifying the land cover, especially forest type. The IKONOS imagery of 11km$\times$11km size was taken on April 24, 2000 in Bong-pyoung Myun Pyungchang-Gun, Kangwon Province. Land cover classes were water, coniferous evergreen, Larix leptolepis, broad-leaved tree, bare land, farm land, grassland, sandy soil and asphalted area. Supervised classification method with algorithm of maximum likelihood was applied for classification. The terrestrial survey was also carried out to collect the reference data in this area. The accuracy of the classification was analyzed with the items of overall accuracy, producer's accuracy, user's accuracy and k for test area through the error matrix. In the accuracy analysis of the test area, overall accuracy was 94.3%, producer's accuracy was 77.0-99.9%, user's accuracy was 71.9-100% and k and 0.93. Classes of bare land, sandy soil and farm land were less clear than other classes, whereas classification result of IKONOS in forest area showed higher performance than that of other resolution(5-30m) satellite data.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field (고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구)

  • Yoo, Hee Young;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.621-630
    • /
    • 2017
  • In this paper, a study on classification targeting a main production area of garlic and onion was carried out in order to figure out the applicability of multi-temporal high-resolution satellite imagery for field crop classification. After collecting satellite imagery in accordance with the growth cycle of garlic and onion, classifications using each sing date imagery and various combinations of multi-temporal dataset were conducted. In the case of single date imagery, high classification accuracy was obtained in December when the planting was completed and March when garlic and onion started to grow vigorously. Meanwhile, higher classification accuracy was obtained when using multi-temporal dataset rather than single date imagery. However, more images did not guarantee higher classification accuracy. Rather, the imagery at the planting season or right after planting reduced classification accuracy. The highest classification accuracy was obtained when using the combination of March, April and May data corresponding the growth season of garlic and onion. Therefore, it is recommended to secure imagery at main growth season in order to classify garlic and onion field using multi-temporal satellite imagery.

Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery (다종 위성영상을 활용한 재난대응 방안 연구)

  • Jongsoo Park;Dalgeun Lee;Junwoo Lee;Eunji Cheon;Hagyu Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.755-770
    • /
    • 2023
  • Due to recent severe climate change, abnormal weather phenomena, and other factors, the frequency and magnitude of natural disasters are increasing. The need for disaster management using artificial satellites is growing, especially during large-scale disasters due to time and economic constraints. In this study, we have summarized the current status of next-generation medium-sized satellites and microsatellites in operation and under development, as well as trends in satellite imagery analysis techniques using a large volume of satellite imagery driven by the advancement of the space industry. Furthermore, by utilizing satellite imagery, particularly focusing on recent major disasters such as floods, landslides, droughts, and wildfires, we have confirmed how satellite imagery can be employed for damage analysis, thereby establishing its potential for disaster management. Through this study, we have presented satellite development and operational statuses, recent trends in satellite imagery analysis technology, and proposed disaster response strategies that utilize various types of satellite imagery. It was observed that during the stages of disaster progression, the utilization of satellite imagery is more prominent in the response and recovery stages than in the prevention and preparedness stages. In the future, with the availability of diverse imagery, we plan to research the fusion of cutting-edge technologies like artificial intelligence and deep learning, and their applicability for effective disaster management.