• 제목/요약/키워드: Remifentanil, Target-Controlled Infusion

검색결과 16건 처리시간 0.021초

심한 치과공포증 환자에서 임플란트 식립을 위한 Propofol과 Remifentanil 진정법 -증례 보고- (Sedation for Implant Surgery using Propofol and Remifentanil in Severe Dental Phobia Patient -A Case Report-)

  • 이정후;서광석;신터전;김현정
    • 대한치과마취과학회지
    • /
    • 제10권2호
    • /
    • pp.209-213
    • /
    • 2010
  • Anxiety and fear is two main factors that keep patients from going to dental clinic. Especially, patients may feel implants operations are more traumatic. Intravenous conscious sedation for dental treatment can make patient comfortable and relaxable. Midazolam is more popular for sedation for dental treatment, but target-controlled infusion (TCI) of propofol and remifentanil is gaining wide popularity. A 54-year-old female patient who had severe dental phobia was referred to our dental hospital. She had past history of 2 times of hyperventilation and syncope during dental treatment. The patient showed a lot of dental anxiety and fear to dental treatments and stress reduction protocol was needed. We administered intravenous conscious sedation using target controlled infusion system with remifentanil and propofol. During sedation, we monitored the status of consciousness with bispectral index and vital signs. Dental treatment could be finished successfully without any problems.

Comparison of the effects of target-controlled infusion-remifentanil/midazolam and manual fentanyl/midazolam administration on patient parameters in dental procedures

  • Lobb, Doug;Ameli, Nazila;Ortiz, Silvia;Lai, Hollis
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제22권2호
    • /
    • pp.117-128
    • /
    • 2022
  • Background: Moderate sedation is an integral part of dental care delivery. Target-controlled infusion (TCI) has the potential to improve patient safety and outcome. We compared the effects of using TCI to administer remifentanil/manual bolus midazolam with manual bolus fentanyl/midazolam administration on patient safety parameters, drug administration times, and patient recovery times. Methods: In this retrospective chart review, records of patients who underwent moderate intravenous sedation over 12 months in a private dental clinic were assessed. Patient indicators (pre-, intra-, and post-procedure noninvasive systolic and diastolic blood pressure, respiration, and heart rate) were compared using independent t-test analysis. Patient recovery time, procedure length, and midazolam dosage required were also compared between the two groups. Results: Eighty-five patient charts were included in the final analysis: 47 received TCI-remifentanil/midazolam sedation, and 38 received manual fentanyl/midazolam sedation. Among the physiological parameters, diastolic blood pressure showed slightly higher changes in the fentanyl group (P = 0.049), respiratory rate changes showed higher changes in the fentanyl group (P = 0.032), and the average EtCO2 was slightly higher in the remifentanil group (P = 0.041). There was no significant difference in the minimum SpO2 levels and average procedure length between the fentanyl and remifentanil TCI pump groups (P > 0.05). However, a significant difference was observed in the time required for discharge from the chair (P = 0.048), indicating that patients who received remifentanil required less time for discharge from the chair than those who received fentanyl. The dosage of midazolam used in the fentanyl group was 0.487 mg more than that in the remifentanil group; however, the difference was not significant (P > 0.05). Conclusion: The combination of TCI administered remifentanil combined with manual administered midazolam has the potential to shorten the recovery time and reduce respiration rate changes when compared to manual administration of fentanyl/midazolam. This is possibly due to either the lower midazolam dosage required with TCI remifentanil administration or achieving a stable, steady-state low dose remifentanil concentration for the duration of the procedure.

Effect-site Concentration of Alfentanil or Remifentanil for the Relief of Postoperative Pain in the Intensive Care Unit Patients

  • Jang, Hae-Lan;Kang, Hoon
    • International Journal of Contents
    • /
    • 제11권2호
    • /
    • pp.69-73
    • /
    • 2015
  • This study was performed to determine the optimal doses of alfentanil or remifentanil (effect-site concentrations) required to prevent pain and other suffering after abdominal general surgery in ICU patients. A total of 52 general abdominal surgical patients (ASA IIIII) requiring artificial ventilatory care in the ICU were provided with either alfentanil (24 patients) or remifentanil (28 patients) through target controlled infusion (TCI). Alfentanil and remifentanil concentrations were titrated up and down until the pain score became less than 3 (VAS; Visual Analogue Score < 3). The effect-site concentrations (ng/ml) of alfentanil or remifentanil required to adequately control postoperative pain in the ICU were 64 +/- 12 and 1.9 +/- 0.5 for intubation with artificial ventilation, 57 +/- 9 and 1.7 +/- 0.7 for intubation with spontaneous ventilation, and 41 +/- 10 and 1.2 +/- 0.5 after extubation, respectively. Pain scores and the corresponding opioid concentrations were independent from respiratory condition. The three effect-site concentrations of alfentanil and remifentanil obtained from this clinical trial using the TCI technique can be a guideline in the administration of the same opioids to relieve the discomfort of ICU patients who have undergone abdominal general surgery.

EC50 of Remifentanil to Prevent Propofol Injection Pain

  • Hong, Hun Pyo;Ko, Hyun Min;Yoon, Ji Young;Yoon, Ji Uk;Park, Kun Hyo;Roh, Young Chea
    • 대한치과마취과학회지
    • /
    • 제13권3호
    • /
    • pp.89-94
    • /
    • 2013
  • Background: Various strategies have been studied to reduce the propofol injection pain. This study was designed to find out effect-site target concentration (Ce) of remifentanil at which there was a 50% probability of preventing the propofol injection pain (EC50). Methods: Anesthesia was induced with a remifentanil TCI (Minto model). The Ce of remifentanil for the first patient started from 2.0 ng/ml. The Ce of remifentanil for each subsequent patient was determined by the response of the previous patient by Dixon up-and-down method with the interval of 0.5 ng/ml. After the remifentanil reached target concentrations, propofol was administered via a target-controlled infusion system based on a Marsh pharmacokinetic model using a TCI device (Orchestra$^{(R)}$; Fresenius-Vial, Brezins, France). The dose of propofol was effect site target-controlled infusion (TCI) of $3{\mu}g/ml$. Results: The EC50 of remifentanil to prevent the propofol injection pain was $1.80{\pm}0.35ng/ml$ by Dixon's up and down method. Conclusions: The EC50 of remifentanil to blunt the pain responses to propofol injection was $1.80{\pm}0.35ng/ml$ for propofol TCI anesthesia.

Comparison of Efficacy of Propofol When Used with or without Remifentanil during Conscious Sedation with a Target-Controlled Infuser for Impacted Teeth Extraction

  • Sung, Juhan;Kim, Hyun-Jeong;Choi, Yoon Ji;Lee, Soo Eon;Seo, Kwang-Suk
    • 대한치과마취과학회지
    • /
    • 제14권4호
    • /
    • pp.213-219
    • /
    • 2014
  • Background: Clinical use of propofol along with remifentanil for intravenous sedation is increasing in these days, but there are not enough researches to evaluate proper target concentration when these drugs are infused by using target controlled infusion (TCI) pump in dental treatment cases. In this study, we compared efficacy of TCI conscious sedation and target concentration of propofol when it used with or without remifentanil during conscious sedation with the help of a TCI for the surgical extraction of impacted teeth. Methods: After IRB approval, all the charts of patients who had undergone surgical extraction of impacted teeth under propofol TCI sedation for 6 months were selected and reviewed for this study. After reviewal of charts, we could divide patients in two groups. In one group (group 1), only propofol was selected for sedation and initial effect site concentration of propofol was $1{\mu}g/ml$ (n = 33), and in another group (group 2), both propofol and remifentanil was infused and initial effect site concentration of each drug was $0.6{\mu}g/ml$ and 1 ng/ml respectively (n = 25). For each group, average propofol target concentration was measured. In addition, we compared heart rate, respiratory rate, and systolic and diastolic blood pressure as well as oxygen saturation. Besides, BIS, sedation scores (OAAS/S), and subjective satisfaction scores were compared. Results: Between group 1 and 2, there were no significant differences in demographics (age, weight and height), and total sedation time. However, total infused dose and the effect site target concentration of propofol was $163.8{\pm}74.5mg$ and $1.13{\pm}0.21{\mu}g/ml$ in group 1, and $104.3{\pm}46.5mg$ and $0.72{\pm}0.26{\mu}g/ml$ in the group 2 with $1.02{\pm}0.21ng/l$ of the effect site target concentration of remifentanil, respectively. During sedation, there were no differences between overall vital sign, BIS and OAAS/S in 2 groups (P > 0.05). However, we figured out patients in group 2 had decreased pain sensation during sedation. Conclusions: Co-administration of propofol along with remifentanil via a TCI for the surgical extraction of impacted teeth may be safe and effective compared to propofol only administration.

Safety and efficacy of target controlled infusion administration of propofol and remifentanil for moderate sedation in non-hospital dental practice

  • Douglas Lobb;Masoud MiriMoghaddam;Don Macalister;David Chrisp;Graham Shaw;Hollis Lai
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제23권1호
    • /
    • pp.19-28
    • /
    • 2023
  • Background: Fearful and anxious patients who find dental treatment intolerable without sedative and analgesic support may benefit from moderate sedation. Target controlled infusion (TCI) pumps are superior to bolus injection in maintaining low plasma and effect-site concentration variability, resulting in stable, steady-state drug concentrations. We evaluated the safety and efficacy of moderate sedation with remifentanil and propofol using TCI pumps in non-hospital dental settings. Methods: A prospective chart review was conducted on 101 patients sedated with propofol and remifentanil using TCI pumps. The charts were completed at two oral surgeons and one general dentist's office over 6 months. Hypoxia, hypotension, bradycardia, and over-sedation were considered adverse events and were collected using Tracking and Reporting Outcomes of Procedural Sedation (TROOPS). Furthermore, patient recovery time, sedation length, drug dose, and patient satisfaction questionnaires were used to measure sedation effectiveness. Results: Of the 101 reviewed sedation charts, 54 were of men, and 47 were of women. The mean age of the patients was 40.5 ±18.7 years, and their mean BMI was 25.6 ± 4.4. The patients did not experience hypoxia, bradycardia, and hypotension during the 4694 min of sedation. The average minimum Mean Arterial Pressure (MAP) and heartbeats were 75.1 mmHg and 60.4 bpm, respectively. 98% of patients agreed that the sedation technique met their needs in reducing their anxiety, and 99% agreed that they were satisfied with the sedation 24 hours later. The average sedation time was 46.9 ± 55.6 min, and the average recovery time was 12.4 ± 4.4 min. Remifentanil and propofol had mean initial effect-site concentration doses of 0.96 µ/.ml and 1.0 ng/ml respectively. The overall total amount of drug administered was significantly higher in longer sedation procedures compared to shorter ones, while the infusion rate decreased as the procedural stimulus decreased. Conclusion: According to the results of this study, no patients experienced adverse events during sedation, and all patients were kept at a moderate sedation level for a wide range of sedation times and differing procedures. The results showed that TCI pumps are safe and effective for administering propofol and remifentanil for moderate sedation in dentistry.

매복지치 발치 시, Propofol과 Remifentanil을 이용한 목표조절농도주입(TCI) 의식하 진정 (Target Controlled Conscious Sedation with Propofol and Remifentanil for the Extraction of Impacted Wisdom Teeth)

  • 방보영;신터전;서광석;김현정
    • 대한치과마취과학회지
    • /
    • 제10권2호
    • /
    • pp.159-165
    • /
    • 2010
  • 배경: 매복지치의 수술적 발치 시 propofol과 remifentanil을 이용한 목표조절농도주입(Target controlled infusion) 의식하 정주진정법의 적절한 주입농도를 제시하고 그 안전성을 평가하고자 하였다. 방법: 매복지치의 수술적 발치가 예정된 미국마취학회 신체 등급 분류 1, 2에 속하는 15-65세, 142명(여 83명, 남 59명)의 환자를 대상으로 소급 연구하였다. 환자는 수술 전 목표조절농도주입법을 이용한 의식하 진정법 사용에 관한 동의서를 작성하였다. 정맥내 삽관을 시행하고 수액을 공급을 시작하고, 4-5 L/min의 산소를 비관을 통해서 공급하였다. Propofol과 remifentanil의 초기 목표 혈중농도는 각각 $0.5\;{\mu}g/ml$와 1.0 ng/ml로 정하였다. 수술 중, 환자의 불안 통증 정도에 따라 목표농도를 조절하였으며 최저 농도와 최대 농도, 평균 농도, 주입된 총 용량을 기록하였다. 또한 수축기혈압과 맥박 수, 산소포화도, 호기 말 이산화탄소량을 수술 시작 전, 수술 중 5분 간격으로 확인하고 기록하였다. 모든 측정치는 평균 $\pm$ 표준편차나 환자의 수, 초기 측정치에서의 백분율 편차로 표시하였다. 결과: 수술 동안의 목표 혈중농도의 평균은 propofol은 $0.54{\pm}0.11\;{\mu}g/ml$이고, remifentanil은 $1.11{\pm}0.30\;ng/ml$였다. 수술 중 조절된 최대농도는 propofol은 $0.6{\pm}0.23\;{\mu}g/ml$이고, remifentanil은 $1.3{\pm}0.63\;ng/ml$였다. 이는 의식하 진정에 해당되는 범의의 농도라고 할 수 있겠다. 진정동안 환자의 언어적 의사소통은 유지 되었으며 산소 포화도는 4-5 L/min 의 산소 보충 하에 98%이상으로 유지되었다. 수축기 혈압과 맥박은 대부분의 환자에서 정상변위범위(${\pm}20%$)내에서 유지되었다. 결론: 본 연구는 목표조절 농도주입 의식하 진정에서 사용된 농도(propofol $0.5\;{\mu}g/ml$, remifentanil 1.0 ng/ml)는 안전하게 의식하 진정을 가능한 것을 보여준다. 이는 치과 치료 시 목표조절농도 주입의식하 진정법에서 적절한 목표농도를 제시한다.

Optimal effective-site concentration of remifentanil for sedation during plate removal of maxilla

  • Park, Jeong-Hoon;Yoon, Ji-Young;Kim, Eun-Jung;Yoon, Ji-Uk;Choi, Byung-Moon;Ahn, Ji-Hye
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제18권5호
    • /
    • pp.295-300
    • /
    • 2018
  • Background: Removal of the plate following Le Fort I osteotomy and BSSO (bilateral sagittal split osteotomy) is a common procedure. However, patients who undergo plate removal experience intense pain and discomfort. This study investigated the half-maximal effective concentration ($Ce_{50}$) of remifentanil in the prevention of plate removal pain under sedation using dexmedetomidine. Methods: The study evaluated 18 patients, between 18 and 35 years of age, scheduled for elective surgery. Remifentanil infusion was initiated after sedation using dexmedetomidine, and started at a dose of 1.5 ng/mL on the first patient via target-controlled infusion (TCI). Patients received a loading dose of $1.0{\mu}g/kg$ dexmedetomidine over 10 min, followed by a maintenance dose of $0.7{\mu}g/kg/h$. When the surgeon removed the plate, the patient Modified Observer's Assessment of Alertness/Sedation (MOAA/S) score was observed. Results: The Ce of remifentanil ranged from 0.9 to 2.1 ng/mL for the patients evaluated. The estimated effect-site concentrations of remifentanil associated with a 50% and 95% probability of reaching MOAA/S score of 3 were 1.28 and 2.51 ng/mL, respectively. Conclusion: Plate removal of maxilla can be successfully performed without any pain or adverse effects by using the optimal remifentanil effect-site concentration ($Ce_{50}$, 1.28 ng/mL; $Ce_{95}$, 2.51 ng/mL) combined with sedation using dexmedetomidine.

Optimal effect-site concentration of remifentanil for minimizing cardiovascular changes caused by fiberoptic nasotracheal intubation

  • Kim, Eun-Jung;Jeon, Hyun-Wook;Kim, Tae-Kyun;Baek, Seung-Hoon;Yoon, Ji-Uk;Yoon, Ji-Young
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제15권4호
    • /
    • pp.221-227
    • /
    • 2015
  • Background: Endotracheal intubation induces clinically adverse cardiovascular changes. Various pharmacological strategies for controlling these responses have been suggested with opioids being widely administered. In this study, the optimal effect-site concentration (Ce) of remifentanil for minimizing hemodynamic responses to fiberoptic nasotracheal intubation was evaluated. Methods: Thirty patients, aged 18-63 years, scheduled for elective surgery were included. Anesthesia was induced with a propofol and remifentanil infusion via target-controlled infusion (TCI). Remifentanil infusion was initiated at 3.0 ng/mL, and the response of each patient determined the Ce of remifentanil for the next patient by the Dixon up-and-down method at an interval of 0.5 ng/mL. Rocuronium was administered after propofol and remifentanil reached their preset Ce; 90 seconds later fiberoptic nasotracheal intubation was initiated. Non-invasive blood pressure and heart rate (HR) were measured at pre-induction, the time Ce was reached, immediately before and after intubation, and at 1 and 3 minutes after intubation. The up-and-down criteria comprised a 20% change in mean blood pressure and HR between just prior to intubation and 1 minute after intubation. Results: The median effective effect-site concentration ($EC_{50}$) of remifentanil was $3.11{\pm}0.38ng/mL$ by the Dixon's up-and-down method. From the probit analysis, the $EC_{50}$ of remifentanil was 3.43 ng/mL (95% confidence interval, 2.90-4.06 ng/mL). In PAVA, the EC50 and EC95 of remifentanil were 3.57 ng/mL (95% CI, 2.95-3.89) and 4.35 ng/mL (95% CI, 3.93-4.45). No remifentanil-related complications were observed. Conclusions: The $EC_{50}$ of remifentanil for minimizing the cardiovascular changes and side effects associated with fiberoptic nasotracheal intubation was 3.11-3.43 ng/mL during propofol TCI anesthesia with a Ce of 4 ug/mL.

단국대학교 치과대학 부속치과병원에서 시행된 정주진정에 대한 연구 (A Study of Intravenous Sedation in Dankook University Dental Hospital)

  • 오정은;김종수;김승오
    • 대한치과마취과학회지
    • /
    • 제13권1호
    • /
    • pp.1-7
    • /
    • 2013
  • Background: Intravenous sedation is effective for dental patients who are anxious. Recently, target-controlled infusion (TCI) has begun to be used widely to administer and titrate propofol and remifentanil during sedation. To investigate the effect and safety of the pharmacologic agents used in anesthetic department, we performed a retrospective study. Methods: Retrospective study of a series of dental procedure under intravenous sedation performed in department of anesthesiology in Dental Hospital of Dankook University was carried out with propofol or propofol/remifentanil between January and August 2011 and January and April 2012. All patients received oxygen by nasal cannula. The average propofol and remifentanil target was 0.5 ${\mu}g/ml$ and 1.0 ng/ml, respectively using a TCI pump. The average peripheral oxygen saturation ($SpO_2$), heart rate, blood pressure, respiratory rate, nasal end-tidal $CO_2$ were recorded at 5-10 minute intervals. The age, gender, weight, procedure and sedation time, type of procedure were also recorded. Results: We included 22 cases of 19 adults (group A) and 6 cases of children (group B). In group A, 4 patients received propofol (group A-P), and 15 patients received propofol with remifentanil (group A-PR). In group B, 6 patients received propofol only. The mean age of group A was 41.1 years old and that of group B was 9.5 years old. No clinically significant complications were noted. There were no case of de-saturation <90%. The median respiratory rate was 13.1 (range 6 to 36) in group A and 19 (range 13 to 25) in group B. The median end tidal $CO_2$ was 36.7 mmHg(range 8 mmHg to 56 mmHg) in group A and 41.7 mmHg (range 30 mmHg to 53 mmHg) in group B. Conclusions: Based on our results, dental sedation using propofol/remifentanil in adult and propofol in children with TCI pump seems to appear as a safe and effective procedure while performing dental procedure.