• Title/Summary/Keyword: Reluctance motor

Search Result 954, Processing Time 0.018 seconds

Maximum Torque Operation of SRM by using a Self-tuning Control Method (SRM의 최대 토크 운전을 위한 자기동조 제어)

  • 서종윤;김광헌;장도현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.240-245
    • /
    • 2004
  • This paper presents a Switched Reluctance Motor(SRM) drive using the self-tuning control method to achieve the maximum torque. SRM has the difficulty to research it by an analytic method and to control the speed End torque because of the high nonlinearity. So, in this paper, the self-tuning control method is applied to relevantly controlling turn-on/off angle to operate at the maximum torque. Also, the feedback signals to control the turn-on/off angle are the encoder pulse and the increment of phase current. At first, n adequate turn-off angle is searched by itself and then a turn-on angle is done. As the relationship between turn-on and him-off angle is mutual dependent, the turn-on/off angle is controlled by a real time self-tuning control method in order to maintain the maximum torque. The proposed self-tuning Algorithm is verified by experiments.

Position Sensorless Cotrol of SRM using Evolutionary Sliding (진화 슬라이딩 모드 관측기를 사용한 SRM의 위치 센서리스 제어)

  • 박진현;박한웅;최영규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.516-523
    • /
    • 2001
  • This paper introduces a indirect rotor position and speed estimation algorithm for the SRM(switched reluctance motor) sensorless control based on the sliding mode observer and evolutionary programming The information of position and speed is generally provided by encoder or resolve. However, the position sensor not only adds complexity, cost and size to the whole drive system, but also causes limitation for industrial applications. In this paper, in order to eliminate the position sensor, indirect position sensing, indirect position sensing method using sliding mode observer is used for SRM drives. But if sliding mode observer parameters are selected to be large, the corresponding rapid changes of estimated position and velocity result in chattering phenomenon. Therefore in order to reduce the chattering, this observer parameters are optimized by evolutionary programming. And PID controller is also optimized to track precisely for the SRM using evolutionary programming.

  • PDF

Finite Element Modeling Method for SRM Design (SRM 설계를 위한 유한 요소 모델링 기법)

  • Bae, Jae-Nam;Lee, Sung-Gul;Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.586-592
    • /
    • 2018
  • SRMs are difficult to design using a simple mathematical model and, consequently, numerical analysis based characteristics analysis is used including drive circuits. In this process, it is necessary to analyze the trends according to the change of the design factors, however, many of the design factors affect each other. In order to shorten the design time and achieve a proper design, a modeling technique based on the design parameters is needed. For this purpose, this paper summarizes the formulas employed for shape modeling by minimizing the number of major design factors of the SRM, and proposes a methodology for SRM design using these formulas. In particular, we propose a design method for a 6/4-pole model, one which has been studied for a long time, and showed an example of a design produced by the proposed method.

Performance Analysis of Single-phase SRM Drive System with Single-stage Power Factor Correction (1단구조방식의 PFC회로를 갖는 단상 SRM 구동시스템의 특성해석)

  • Lee, Dong-Hee;Lee, Jin-Kuk;An, Young-Ju;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.328-339
    • /
    • 2006
  • In this paper the characteristic analysis of a single-phase switched reluctance motor (SRM) drive system with power factor correction (PFC) circuit is presented. The SRM is a low cost, simple and has a good high speed performance. The SRM drive with diode rectifier and filter capacitor has a low power factor because of short switch on time of capacitor. A novel switching topologic is presented to improve power factor and reduce torque ripple based on analysis of PFC circuit. Accordingly the SRM drive system with PFC circuit is also presented. Through the numerical analysis of the system, the toque ripple, power factor and efficiency with the change of rotary speed, load torque and capacity of the capacitor are achieved and compared with actual measured value.