• Title/Summary/Keyword: Reluctance motor

Search Result 954, Processing Time 0.022 seconds

Hybrid Excitation Control of SRM Drive for Reduction of Vibration and Acoustic Noise

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo;Park, Sung-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.151-155
    • /
    • 2001
  • The simple motor construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial magnetic force when phase current is extinguished during commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Reduction Characteristics of Vibration and Acoustic Noise of SRM Using Hybrid Excitation Method (하이브리드 여자방식을 이용한 SRM의 진동 소음 저감 특성)

  • Kim, Chang-Seop;O, Seok-Gyu;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.438-444
    • /
    • 2001
  • The simple motor construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial force when phase current is extinguished during commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Rotor Shape Design for Minimization Torque Ripple of Switched Reluctance Motor (SRM 토오크리플 저감을 위한 회전자 형상 설계)

  • Oh, Ju-Hwan;Kwon, Byoung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1291-1293
    • /
    • 2005
  • Switched reluctance motors have the advantage a high torque/weight ratio, as the large reluctance torque is made by salient poles of both stator and rotor, and a high reliability. On the other hand, the switched reluctance motors have the disadvantage of a large ripple torque which is made by salient poles. So the application for the industrial fields have been limited to special cases. This paper describes the design of a 12/8 switched reluctance motor using a enemy layer method of the asymmetry rotor. The design is focussed to reduce the torque ripple and radial force in the demanded value. The three dimension finite element analysis method(3D-FEM) was used for decides a enemy layer angle of the asymmetry rotor. This paper presents modifications of the rotor pole shape which reduces the torque ripple.

  • PDF

Multi-Object Optimization of the Switched Reluctance Motor

  • Choi, Jae-Hak;Kim, Sol;Kim, Yong-Su;Lee, Sang-Don;Lee, Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, multi-object optimization based on a progressive quadratic response surface method (PQRSM) and a time stepping finite element method (FEM) is proposed. The new PQRSM and FEM are able to decide optimal geometric and electric variables of the switched reluctance motor (SRM) with two objective functions: torque ripple minimization and average torque maximization. The result of the optimum design for SRM demonstrates improved performance of the motor and enhanced relationship between torque ripple and average torque.

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

Torque Ripple Minimization Scheme Using Torque Sharing Function Based Fuzzy Logic Control for a Switched Reluctance Motor

  • Ro, Hak-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.118-127
    • /
    • 2015
  • This paper presents an advanced torque ripple minimization method of a switched reluctance motor (SRM) using torque sharing function (TSF). Generally, TSF is applied into the torque control. However, the conventional TSF cannot follow the expected torque well because of the nonlinear characteristics of the SRM. Moreover, the tail current that is generated at a high speed motor drive makes unexpected torque ripples. The proposed method combined TSF with fuzzy logic control (FLC). The advantage of this method is that the torque can be controlled unity at any conditions. In addition, the controller can track the torque under the condition of the wrong TSF. The effectiveness of the proposed algorithm is verified by the simulations and experiments.

Switched Reluctance Motors for Electric Drive of Overland Belt Conveyor

  • Ptakh, Gennady K.;Evsin, Nicholas F.;Zvezdunov, D. Alex;Rozhkov, Dmitry V.;Yakovenko, Alexander E.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.409-414
    • /
    • 2014
  • The parameters and operating characteristics of the switched reluctance motor (SRM) for the electric drive of the overland belt conveyor CLM-4500 have been presented. The motor power capacity has been equal to 1250 kW, the motor speed - 1000 min-1. SRM power supply has been provided by a three-phase voltage inverter and a 12-pulse rectifier circuit. The group electric drive has been installed on sections number 2 and 3, 3770 m and 3375 m length, respectively, on the areas of "Berezovsky Strip" JSC, a member of the Siberian Coal Energy Company.

Rotor Design of Single Phase Switched Reluctance Motor for Advance Angle Control (앞선각 제어를 위한 단상 SRM 회전자설계)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.92-94
    • /
    • 2006
  • Single phase switched reluctance motor has a high speed capability, due to its very robust rotor, and requires only one electronic power switch in its control circuitry. The latter feature considerably reduces the cost of the drive system. But it involves starting problem and strongly torque ripple, which means that the motor is not suitable for application that require constant torque or speed. To solve torque ripple and region of these problem, this paper presents a single phase Switched Reluctance Motor model with a barrier rotor pole. Also it is simulated the designed prototype model by FEM for the prediction of characteristics.

  • PDF

DESIGN OF A HIGH-SPEED HIGH-POWER SWITCHED RELUCTANCE MOTOR

  • Jacket F. Gieras;Park, Jaeho
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • A high speed, three phase, 12/8 pole, 225 kW switched reluctance motor (SRM) has been designed and analyzed. A circuital approach has been used to find the geometry, windings parameters and electromagnetic loading. Then, the 3D finite element method (FEM) has been used to calculate the static torque more accurately and optimize the design. The efficiency of the designed SRM is almost constant over wide range of speed and its phase current is less sensitive to the speed than that of an induction motor of the same rating. Recommendations for manufacturers and users are given.

  • PDF

Design and Analysis of a Permanent-Magnet-Assisted Switched Reluctance Motor

  • Hwang, Hongsik;Hur, Jin;Lee, Cheewoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2209-2217
    • /
    • 2014
  • A permanent-magnet-assisted switched reluctance motor (SRM) having small excitation poles, where phase coils are concentrically wound on the poles and thin permanent magnets are inserted inside the poles, is proposed in this paper. The insertion of permanent magnets into the stator excitation poles has a significant influence on positive torque improvement leading to a boost in efficiency. Three key design parameters such as the thickness of permanent magnets, space between two adjacent permanent magnets, and the width of stator excitation poles are determined during a design procedure in terms of the enhancement of positive torque. Step-by-step design modification and a comparison between the proposed permanent-magnet-assisted SRM and no-permanent-magnet SRM have been conducted by means of static torque comparison along with dynamic performance. The first prototype from steel laminations up to its physical assembly has been constructed.