• Title/Summary/Keyword: Reluctance Torque

Search Result 490, Processing Time 0.025 seconds

A Study on the SRM Torque Computation According to Different Stator Pole Shapes (스위치드 릴럭턴스 전동기의 스테이터 형상에 따른 토크량 계산에 관한 연구)

  • Jo, Hee;Lee, Jong-Woo;Kim, Kyeong-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.693-696
    • /
    • 2011
  • The SRM (Switched Reluctance Motor) is composed of silicon steel plates where the rotor structure is simple and laminated without coil winding or permanent magnet, making it mechanically robust and its maintenance and repair excellent. Applying SRM as traction motor for railway vehicle is given consideration because of its ruggedness capability in severe loading condition and its compact structure. Optimal design of SRM is needed to reduce torque ripple to apply SRM for railway traction drive because SRM has high torque ripple. In this paper, switched reluctance motor with three different stator pole shapes is taken for magnetic analysis using 3d finite element method to apply SRM as traction drive for railway vehicle. It is observed that the model 3 added Tooth Tang Depth and Slot Round to stator shape gives the improved inductance and torque characteristic.

  • PDF

Driving Characteristics Improvement of SRM Winch System using Torque Sharing Function (토크분배함수를 이용한 SRM 윈치 시스템의 운전특성 개선)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • In this paper a new dynamoelectric winch system is introduced which is widely applied in shipping. building, architecture and so on. Generally in the winch system the squirrel cage induction motor is used as prime mover and line voltage is directly applied to the induction motor during operation. So it is difficult to obtain the smoothing revolution. because of variation of the weight of cargo and system operating method. Based on above reasons, the switched reluctance motor (SRM) is proposed to replace the induction motor because of more reliable mechanical structure, better traction characteristic and higher efficiency compared to induction motor. And in order to solve smoothing revolution problem, instantaneous torque control method based on torque sharing function (TSF) is used. Finally the validity of the proposed method is verified through the simulation and experimental results.

PLL Control Scheme for Robust Driving of SRM Drive (SRM 드라이브의 강인한 운전을 위한 PLL 제어 방식)

  • O, Seok-Gyu;Jeong, Tae-Uk;Park, Han-Ung;An, Jin-U;Hwang, Yeong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.461-466
    • /
    • 1999
  • The switched reluctance motor (SRM) would have torque ripple if not operated with an MMF waveform specified for switching angle and phase voltage. This paper describes the robustic control scheme that permits the phase torque to be flat by PLL(Phase Locked Loop) controller. In this control scheme, the locked phase signal of PLL controls the switching dwell angle and it's loop filter signal controls the switching voltage adaptively. Experimental results show that stable dynamic performance is obtained for torque and speed together with low torque ripple on the operation of variable loads.

  • PDF

Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor

  • Nagarajan, V.S.;Kamaraj, V.;Balaji, M.;Arumugam, R.;Ganesh, N.;Rahul, R.;Lohit, M.
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.544-553
    • /
    • 2016
  • Torque ripple minimization without decrease in average torque is a vital attribute in the design of Synchronous Reluctance (SynRel) motor. As the design of SynRel motor is an arduous task, which encompasses many design variables, this work first analyses the significance of the effect of varying the geometrical parameters on average torque and torque ripple and then proposes an extensive optimization procedure to obtain configurations with improved average torque and minimized torque ripple. A hardware prototype is fabricated and tested. The Finite Element Analysis (FEA) software tool used for validating the test results is MagNet 7.6.0.8. Multi Objective Particle Swarm Optimization (MOPSO) is used to determine the various designs meeting the requirements of reduced torque ripple and improved torque performance. The results indicate the efficacy of the proposed methodology and substantiate the utilization of MOPSO as a significant tool for solving design problems related to SynRel motor.

Design and Operation Characteristics of Novel 2-Phase 6/5 Switched Reluctance Motor

  • Hieu, Pham Trung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2194-2200
    • /
    • 2014
  • This paper presents a design of novel 2-phase 6/5 switched reluctance motor (SRM) for an air-blower application. This type of motor is suitable for the applications that require high speed and only one directional rotation as air-blower. The desired air-blower is unidirectional application, and requires a wide positive torque region without torque dead-zone. In order to get a wide positive torque region without torque dead-zone during phase commutation, asymmetric inductance characteristic with non-uniform air-gap is considered. The proposed motor can be operated at any rotor position. The proposed 6/5 SRM uses short flux path technique that achieved by means of winding configuration and lamination geometry. The purpose of short flux path is to reduce the core loss and the absorption MMF in the stator. The proposed 2-phase 6/5 SRM is verified by finite element method (FEM) analysis and Matlab-Simulink. In order to verify the design, a prototype of the proposed motor was manufactured for practical system.

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

Adaptive Variable Angle Control in Switched Reluctance Motor Drives for Electric Vehicle Applications

  • Cheng, He;Chen, Hao;Xu, Shaohui;Yang, Shunyao
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1512-1522
    • /
    • 2017
  • Switched reluctance motor (SRM) is suitable for electric vehicle (EV) applications with the advantages of simple structure, good overload capability, and inherent fault-tolerance performance. The SRM dynamic simulation model is built based on torque, voltage, and flux linkage equations. The EV model is built on the basis of the analysis of forces acting on a vehicle. The entire speed range of the SRM drive is then divided into constant torque and constant power areas. The command torque of the motor drive system is given according to the accelerator pedal coefficient and motor operation areas. A novel adaptive variable angle control is proposed to avoid the switching chattering between the current chopping control and angle position control modes in SRM drives for EV applications. Finally, simulation analysis and experimental results are conducted to verify the accuracy of the proposed simulation model and control strategy.

Torque Ripple Minimization of Switched Reluctance Motor Using Instantaneous Voltage Control Method (순시 전압 조정 방식에 의한 스위치드 릴럭턴스 전동기의 토크 리플 저감)

  • 정선웅;장도현;최규하
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.322-331
    • /
    • 1997
  • In this paper, Instantaneous voltage control method is proposed to reduce the torque ripple of a switched reluctance motor. This method is based on the sum control of the square of the phase currents in proposed converter. A proposed prototype SRM drive circuit is given and it's operation is analyzed. The experiments and simulations are performed to verify the capability of proposed principle.

  • PDF

Torque Ripple Minimization of Switched Reluctance Motor Using Instantaneous Voltage Control Method (순시 전압 제어방식을 이용한 스위치드 릴럭턴스 전동기의 토크 리플 저감)

  • 정선웅;장도현;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.11-19
    • /
    • 1997
  • 본 논문에서는 스위치드 리럭턴스 전동기의 토크 리플 또는 소음을 감소하기 위한 방법으로써 순시 전압제어방식을 제시하였다. 이 방식은 상 정류의 제곱의 합ㅇ르 제어하여 토크 리플을 제거할 수 있다. 제안방식에 대해 해석하였으며, 이 방식의 이론적인 타당성을 입증시키기 위해 소프트웨어 페키지 ASCL에 의해 시뮬레이션하였다. 실험에 의해 SRM 토크 리플의 제거를 확인하였다.

  • PDF

2-phase Excitation Method for Reducing Vibration and Noise of an SRM (SRM의 진동소음 저감을 위한 2권선 여자방식)

  • Choi, Gi-Young;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.76-78
    • /
    • 1999
  • In this paper, the 2-phase excitation method is proposed to reduce vibration and noise. This excitation method produces reluctance torque by mutual action between two phases as well as conventional-reluctance torque due to two phases excitation at a time. The vibration and acoustic noise is reduced thought the sequential phase excitation. This is because that the scheme reduces abrupt change of excitation level by distributed. balanced excitation.

  • PDF