• Title/Summary/Keyword: Relief Supply Chain

Search Result 2, Processing Time 0.015 seconds

A Review of Relief Supply Chain Optimization

  • Manopiniwes, Wapee;Irohara, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • With a steep increase of the global disaster relief efforts around the world, the relief supply chain and humanitarian logistics play an important role to address this issue. A broad overview of operations research ranges from a principle or conceptual framework to analytical methodology and case study applied in this field. In this paper, we provide an overview of this challenging research area with emphasis on the corresponding optimization problems. The scope of this study begins with classification by the stage of the disaster lifecycle system. The characteristics of each optimization problem for the disaster supply chain are considered in detail as well as the logistics features. We found that the papers related to disaster relief can be grouped in three aspects in terms of logistics attributes: facility location, distribution model, and inventory model. Furthermore, the literature also analyzes objectives and solution algorithms proposed in each optimization model in order to discover insights, research gaps and findings. Finally, we offer future research directions based on our findings from the investigation of literature review.

Humanitarian Relief Logistics with Time Restriction: Thai Flooding Case Study

  • Manopiniwes, Wapee;Nagasawa, Keisuke;Irohara, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.398-407
    • /
    • 2014
  • Shortages and delays in a humanitarian logistics system can contribute to the pain and suffering of survivors or other affected people. Humanitarian logistics budgets should be sufficient to prevent such shortages or delays. Unlike commercial supply chain systems, the budgets for relief supply chain systems should be able to satisfy demand. This study describes a comprehensive model in an effort to satisfy the total relief demand by minimizing logistics operations costs. We herein propose a strategic model which determines the locations of distribution centers and the total inventory to be stocked for each distribution center where a flood or other catastrophe may occur. The proposed model is formulated and solved as a mixed-integer programming problem that integrates facility location and inventory decisions by considering capacity constraints and time restrictions in order to minimize the total cost of relief operations. The proposed model is then applied to a real flood case involving 47 disaster areas and 13 distribution centers in Thailand. Finally, we discuss the sensitivity analysis of the model and the managerial implications of this research.