• Title/Summary/Keyword: Reliability of Transmission System

Search Result 575, Processing Time 0.024 seconds

Development of a Method for Reliability Evaluation of Transmission System under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 송전계통 신뢰도 평가방법의 개발)

  • Cha, Jun-Min;Kim, Hong-Sik;Choi, Jae-Seok;Oh, Kwang-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.397-399
    • /
    • 2000
  • This paper presents a method for assessing reliability indices of transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. The key point idea is based on that the reliability level of transmission system is equal to reliability level difference of between composite power system(HLII) and generation system(HLI). It is sure that risk indices of reliability of composite power system are larger than those of generation system. It is the reason that composite power system includes uncertainties and capacity limit of transmission lines. The characteristics and effectiveness of this methodology are illustrated by the case study using MRBTS.

  • PDF

The Best Line Choice for Transmission System Expansion Planning on the Side of the Highest Reliability Level

  • Sungrok Kang;Trungtinh Tran;Park, Jaeseok;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.84-90
    • /
    • 2004
  • This paper presents a new method for choosing the best line for transmission system expansion planning considering the highest reliability level of the transmission system. Conventional methodologies for transmission system expansion planning have been mainly focused on economics, which is the minimization of construction costs. However, quantitative evaluation of transmission system reliability is important because successful operation and planning of an electric power system under the deregulated electricity market depends on transmission system reliability management. Therefore, it is expected that the development of methodology for choosing the best lines considering the highest transmission system reliability level while taking into account uncertainties of transmission system equipment is useful for the future. The characteristics and effectiveness of the proposed methodology are illustrated by the case study using a MRBTS.

A Study on the Reliability Evaluation of a Transmission System

  • Seungpil Moon;Jinboo Choo;Kim, Kyeongho;Donghoon Jeon;Park, Jaeseok
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.119-123
    • /
    • 2003
  • Successful operation of power systems under the deregulated electricity market depends on the management of the transmission system reliability. Quantitative evaluation of the transmission system reliability is an important issue. Particularly, the nodal reliability indices can be of value in the management and control of congestion and reliability of the transmission system under the deregulated electricity market. In this study, a method developed for the reliability evaluation of the transmission system is presented. The Monte Carlo methods are used because of their flexibility when complex operating conditions are being considered. The usefulness and effectiveness of the proposed method are illustrated by a case study with the KEPCO system.

A Study on Probabilistic Reliability Evaluation Considering Transmission System :TRELSS and TranRel (송전계통을 고려한 확률론적 신뢰도 평가에 관한 연구 : TRELSS and TranRel)

  • 최재석;강성록;트란트롱틴;전동훈;문승필;추진부
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.43-55
    • /
    • 2004
  • This paper presents a study on evaluating the reliability indices considering a transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. This paper introduces features and operation modes of the Transmission Reliability Evaluation for Large-Scale Systems(TRELSS) Version 6.0, a commercial program made in EPRI, and TranRel-I V3.2, a educational program made in GSNU(GyeongSang National University) for assessing reliability indices of composite power system. The packages access not only bulk but also bus indices for reliability evaluation of composite powers system. The practicality, effectiveness and future works of this methodology are illustrated by demonstrations of two case studies of modified IEEE 25 buses reliability test system using TRELSS and TranRel-I and a brief case study for the KEPCO size system using TranRel-II made in GSNU.

A Study on Probabilistic Reliability Evaluation of Transmission System (송전계통의 확률론적 신뢰도 평가에 관한 연구)

  • Kang, S.R.;Kim, K.H.;Tinh, T.T.;Choi, J.S.;Jeon, D.H.;Lee, Y.T.;Moon, S.P.;Choo, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.42-45
    • /
    • 2003
  • This paper presents a method for assessing reliability indices of transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. The key point idea is based on that the reliability level of transmission system is equal to reliability level difference of between composite power system(HLII) and generation system(HLI). It is the reason that composite power system includes uncertainties and capacity limit of transmission lines. The practicality and effectiveness of this methodology are illustrated by the case study using the KEPCO size system.

  • PDF

Reliability Evaluation of Power System Operations Considering Time-Varying Features of Components

  • Hu, Bo;Zheng, Ying;Yang, Hejun;Xia, Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1422-1431
    • /
    • 2015
  • The reliability of power system components can be affected by a numbers of factors such as the health level of components, external environment and operation environment of power systems. These factors also affect the electrical parameters of power system components for example the thermal capacity of a transmission element. The relationship of component reliability and power system is, therefore, a complex nonlinear function related to the above-mentioned factors. Traditional approaches for reliability assessment of power systems do not take the influence of these factors into account. The assessment results could not, therefore, reflect the short-term trend of the system reliability performance considering the influence of the key factors and provide the system dispatchers with enough information to make decent operational decisions. This paper discusses some of these important operational issues from the perspective of power system reliability. The discussions include operational reliability of power systems, reliability influence models for main performance parameters of components, time-varying reliability models of components, and a reliability assessment algorithm for power system operations considering the time-varying characteristic of various parameters. The significance of these discussions and applications of the proposed techniques are illustrated by case study results using the IEEE-RTS.

A Study on Optimal Reliability Criterion Determination for Transmission System Expansion Planning

  • Tran Trungtinh;Choi Jae-Seok;Jeon Dong-Hoon;Chu Jin-Boo;Thomas Robert;Billinton Roy
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.62-69
    • /
    • 2005
  • The optimal design of transmission system expansion planning is an important part of the overall planning task of electric power system under competitive electricity market environments. One of main keys of the successful grid expansion planning comes from optimal reliability level/criteria decision, which should be given for constraint in the optimal expansion problem. However, it's very difficult to decide logically the optimal reliability criteria of a transmission system as well as generation system expansion planning in a society. This paper approaches a methodology for deciding the optimal reliability criteria for an optimal transmission system expansion planning. A deterministic reliability criteria, BRR (Bus Reserve Rate) is used in this study. The optimal reliability criteria, BRR/sup */, is decided at minimum cost point of total cost curve which is the sum of the utility cost associated with construction cost and the customer outage cost associated with supply interruptions for load considering bus reserve rate at load buses in long term forecasting. The characteristics and effectiveness of this methodology are illustrated by the case study using IEEE-RTS.

A Study on the Development of Critical Transmission Operating Constraint Prediction (CTOCP) System With High Wind Power Penetration (대규모 풍력발전 계통 연계시 주요 송전망 제약예측시스템 개발에 관한 연구)

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.86-93
    • /
    • 2015
  • Globally, wind power development is experiencing dramatic growth and wind power penetration levels are increasing. Wind generation is highly variable in time and space and it doesn't guarantee the system reliability and secure system operation. As wind power capacity becomes a significant portion of total generation capacity, the reliability assessment for wind power are therefore needed. At present, this operational reliability assessment is focusing on a generation adequacy perspective and does not consider transmission reliability issues. In this paper, we propose the critical transmission operating constraint prediction(CTOCP) system with high wind power penetration to enhance transmission reliability.

Reliability Assessment and Transmission Capability Calculation in Power System using Well-being Method (Well-being 평가기법을 이용한 전력시스템의 신뢰도평가 및 송전용량 계산)

  • Son, Hyun-Il;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.841-846
    • /
    • 2010
  • Reliability in electrical power system refers to normal operation for schedule time in some system that action consists. It means that if there is no contingency of electric power supply decrease or load curtailment, reliability of the system is high. In this paper, a method for evaluation of transmission capability is proposed considering reliability standards. Deterministic and probabilistic methods for evaluation of transmission capability has been studied. These researches considered uncertainty of system components or N-1 contingency only. However, the proposed method can inform customers and system operators more suitable transmission capability. Well-being method using state probabilities of system components proves to be a more effective method in this paper comparing with calculation of LOLE(Loss of Load Expectation). The length of calculation is shorter but it can give more practical information to the exact system operators. Well-being method is applied to IEEE-RTS 24bus system to evaluate reliability in case study. The result is compared with a existing way to evaluate reliability with LOLE and it shows that transmission capability connected with adjacent networks. This paper informs system operators and power suppliers of reliable information for operating power system.

Probabilistic Reliability Evaluation for 765kV Transmission Lines of KEPCO Grid Expansion Planning (한전 765kV 송전선로 확충계획의 확률론적 신뢰도 평가)

  • Tran, T.T.;Kwon, J.J.;Choi, J.S.;Jeon, D.H.;Han, G.N.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.237-239
    • /
    • 2005
  • The importance and necessity conducting studies on grid reliability evaluation have been increasingly important in recent years due to the number of black-out events occurring through in the world. Quantity evaluation of transmission system reliability is very important in a competitive electricity environment. The reason is that the successful operation of electric power under a deregulated electricity market depends on transmission system reliability management. Also in Korea it takes places. This paper presents the probabilistic reliability evaluation for 765KV transmission lines of KEPCO grid expansion planning. The Transmission Reliability Evaluation for large-Scale Systems (TRElSS) Version 6.2, a software package developed by Electric Power Research Institute (EPRI) is utilized in determining the improved probabilistic reliability indices of (KEPCO) system.

  • PDF