• Title/Summary/Keyword: Reliability cost

Search Result 2,287, Processing Time 0.026 seconds

Computing and Reducing Transient Error Propagation in Registers

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2011
  • Recent research indicates that transient errors will increasingly become a critical concern in microprocessor design. As embedded processors are widely used in reliability-critical or noisy environments, it is necessary to develop cost-effective fault-tolerant techniques to protect processors against transient errors. The register file is one of the critical components that can significantly affect microprocessor system reliability, since registers are typically accessed very frequently, and transient errors in registers can be easily propagated to functional units or the memory system, leading to silent data error (SDC) or system crash. This paper focuses on investigating the impact of register file soft errors on system reliability and developing cost-effective techniques to improve the register file immunity to soft errors. This paper proposes the register vulnerability factor (RVF) concept to characterize the probability that register transient errors can escape the register file and thus potentially affect system reliability. We propose an approach to compute the RVF based on register access patterns. In this paper, we also propose two compiler-directed techniques and a hybrid approach to improve register file reliability cost-effectively by lowering the RVF value. Our experiments indicate that on average, RVF can be reduced to 9.1% and 9.5% by the hyperblock-based instruction re-scheduling and the reliability-oriented register assignment respectively, which can potentially lower the reliability cost significantly, without sacrificing the register value integrity.

Design of a Life Test Sampling Plan Based on the Cost Model

  • Kwon, Young-Il
    • International Journal of Reliability and Applications
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • An economic life test sampling plan for products with exponential lifetime distribution is developed. To reduce test time, a test plan with curtailed Type II censoring is considered. A cost model is constructed which involves three cost components; test cost, accept cost, and reject cost. Determination of optimal plan minimizing the expected average cost per lot is discussed with a constraint related to consumer's risk. Some numerical examples are provided.

  • PDF

Evaluation of Power Quality Cost Based on Value-Based Methodology and Development of Unified Index (가치산정법에 의한 전력품질비용 산정 및 단일화지수의 개발)

  • Lee, Buhm;Kim, Kyoung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1293-1298
    • /
    • 2011
  • This paper presents an Unified Index which can evaluate a performance of a distribution system based on value-based methodology. Reliability cost and voltage sags cost are calculated for each load point using Reliability Sector Customer Damage Function(SCDF). Aging cost is calculated for each load point using Aging SCDF. Power loss cost and operation cost are calculated for the system. By summation of each cost of load point and system, power quality cost can be obtained. Finally, this paper developed an unified index which can show the performance of a distribution system. Presented method has been applied to a real system, the usefulness of the method has been verified.

Optimal Release times of a Software Cost Model with Consideration of Various Costs

  • Lee Chong Hyung;Jang Kyu Beom;Park Dong Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.251-257
    • /
    • 2005
  • Software system which is essential in operating the computer has gradually become an indispensable element in many aspects of our daily lives and an important factor in numerous systems. In recent years, software cost sometimes exceeds the cost of maintaining the hardware system. In addition to the cost necessary to develop the new software system and to maintain the system, the penalty costs incurred due to software failures are even more significant. In this paper, a cost model incorporating the warranty cost, debugging costto remove each fault detected in the software system, and delivery delay cost is developed. A software reliability model based on non-homogeneous Poisson process(NHPP) is established and the optimal software release policies to minimize the expected total software cost are discussed. Numerical examples are provided to illustrate the results.

  • PDF

A Study on the Optimum Software Release with without Testing Efforts (테스트노력을 고려하지 않은 소프트웨어의 최적발행)

  • Che, Gyu-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1109-1112
    • /
    • 2005
  • The software reliability is defined, and not only the relations between testing time and reliability, but also the relation between duration following failure fixing and reliability are studied in this paper. The release time making the testing cost to be minimum is determined through evaluating the cost for each condition. Also, the release time is determined depending on the conditions of the first reliability, considering the specified reliability. The optimum release time is determined by simultaneously studying two optimum release time issues that determine both the cost related time and the specified reliability related time. And, each condition and limitation are studied. The trend of the optimum time is also examined.

  • PDF

A Study on the Optimum Software Release with Uniform Testing Efforts (일정테스트노력 소프트웨어의 최적발행)

  • Che, Gyu-Shik;Kim, Jong-Ki;Chang, Won-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • The software reliability is defined, and not only the relations between testing time and reliability, but also the relation between duration following failure fixing and reliability are studied in this paper. The release time making the testing cost to be minimum is determined through evaluating the cost for each condition. Also, the release time is determined depending on the conditions of the first reliability, considering the specified reliability. the optimum release time is determined by simultaneously studying two optimum release time issues that determine both the cost related time and the specified reliability related time. And, each condition and limitation are studied. The trend of the optimum time is also examined.

Evaluation for Reliability of Distribution Power System taking into consideration Customer Interruption Cost (수용가 정전비용을 이용한 배전계통 공급신뢰도 산출)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.267-269
    • /
    • 2001
  • This paper presents algorithms to evaluate reliability of distribution power system taking into consideration customer interruption cost. Customer interruption cost is considered as one of the valuable index to estimate reliability of the distribution power system from customer situation. Also, this paper estimate evaluation results regarding the reliability of distribution power system using a sample model system. Finally, evaluation results of unserved energy and system interruption cost based on customer interruption cost are shown in detail.

  • PDF

The Reliability Evaluation and Outage Cost Assessment of Composite Power System (복합전력계통의 유효부하지속곡선을 이용한 신뢰도 평가 및 공급지장비 추정)

  • Moon, Seung-Pil;Kim, Hong-Sik;Jang, Soon-Ryong;Choi, Jae-Seok;Kang, Jin-Jung;Cho, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1033-1035
    • /
    • 1998
  • This paper presents a new analytical method for assessing outage cost of composite power system with considering transmission system uncertainty. Composite power system ELDC(CMELDC) was developed and proposed from reliability evaluation of composite power system in order to analysis the outage cost on HLII. In this study, considering the characteristic of each load point, the CMELDC was used for outage cost assessment and reliability evaluation at each load point. The characteristics and effectiveness of this methodology are illustrated by the case study (IEEE-RTS 24Buses).

  • PDF

A Study on the Methods for make sure of the Product Reliability (제품의 제조신뢰성 확보 방법론 연구)

  • Lee Jong-Beom;Cho Jai-Rip
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.147-155
    • /
    • 2005
  • When a failure or fault is detected, the product is adjusted or design change and is returned to its original condition before the failure or fault. Continuous improvement of the FMEA system is to determine an optimum product reliability that minimizes the total cost per unit time associated with inspection, repair, and the nondetection cost.

  • PDF

Optimal Maintenance Cycle for Aviation Oil Testing Equipment under the Consideration of Operational Environment (운용환경을 고려한 항공오일시험장비의 최적정비주기 설정)

  • Kim, In Seok;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • Purpose: Military maintenance involves corrective and preventive actions carried out to keep a system in or restore it to a predetermined condition. This research develops an optimal maintenance cycle for aviation oil testing equipment with acceptable reliability level and minimum maintenance cost. Methods: The optimal maintenance policy in this research aims to satisfy the desired reliability level at the lowest cost. We assume that the failure process of equipment follows the power law non-homogeneous Poisson process model and the maintenance system is a minimal repair policy. Estimation and other statistical procedures (trend test and goodness of fit test) are given for this model. Results: With time varying failure rate, we developed reliability-based maintenance cost optimization model. This model will reduce the ownership cost through adopting a proactive reliability focused maintenance system. Conclusion: Based on the analysis, it is recommended to increase the current maintenance cycle by three times which is 0.5 year to 1.5 years. Because of the system's built-in self-checking features, it is not expected to have any problems of preventative maintenance cycle.