• Title/Summary/Keyword: Reliability Simulator

Search Result 286, Processing Time 0.029 seconds

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

The Validity and Reliability of a Korean Version of the Satisfaction with Simulation Experience Scale for Evaluating Satisfaction with High-Fidelity Simulation Education for Nursing Students (간호대학생의 고성능 인체 환자 모형 시뮬레이션 교육 평가를 위한 한국판 시뮬레이션 만족도 경험 도구의 타당도와 신뢰도 연구)

  • Kim, Jiyoung;Heo, Narae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.540-548
    • /
    • 2018
  • The purpose of this study was to test the validity and reliability of the Satisfaction with Simulation Experience (SSE) scale for evaluating high-fidelity simulation education for nursing students. Participants were 174 nursing students, seniors enrolled in two colleges in two different regions. Collected data were analyzed using SPSS / WIN 22.0 and tested for construct validity (factor analysis, group comparison test) and reliability (internal consistency). Factor analysis revealed 17 items and 3 factors explaining 71.581% of the variance. Group comparisons showed that satisfaction with simulation training differed significantly across satisfaction to a college life and school record. Internal consistency reliability for all items was .945. For each sub-domain, the reliability coefficient was .929 for 'Debrief', .908 for 'Clinical learning and reflection', and .860 for 'Clinical reasoning'. Nursing students' mean satisfaction with simulation using the high-fidelity simulator was 3.92. Results of this study are expected to be used for evaluating the satisfaction of nursing college students receiving high-fidelity simulation education, and to serve as groundwork for the development and application of nursing simulation education.

Study on Estimation of Design Factors for 6 Degree-of-Freedom Simulator (6자유도 시뮬레이터의 설계인자 추정에 관한 연구)

  • Yoon, Jun-Seok;Song, Woo-Jin;Byun, Young-Seop;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.447-456
    • /
    • 2010
  • The application of a reliable motion simulator can contribute effectively in the evaluation of the performance of a vehicle platform in the development stage of a small unmanned aerial vehicle (UAV). Therefore, the research on a reliable motion simulator can accelerate the development of UAV and decrease the relevant cost. In this paper, the design factors considered in the preliminary design stage of a 6 degree-of freedom motion simulator are defined and the motion range of the simulator is described on the basis of these design factors. The length, acceleration, and the required thrust of actuators with respect to the motion simulator under development are also predicted. The motion range can be increased and a suitable actuator can be selected and produced by applying these results in the manufacturing process of the motion simulator. Thus, the reliability of the motion simulators can be achieved during the actual design operation of the UAV.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

A study on advanced PV operation algorithm to improve the PV Power-Hardware-In-Loop Simulator (PV PHIL-시뮬레이터의 성능 개선을 위한 최적의 운영제어 알고리즘 연구)

  • Kim, Dae-Jin;Kim, Byungki;Ko, Hee-Sang;Jang, Moon-Seok;Ryu, Kyung-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.444-453
    • /
    • 2017
  • This paper proposes an operational algorithm for a Photovoltaic Power-Hardware-In-Loop Simulator that is designed to improve the control algorithm and reliability of the PV Inverter. There was an instability problem in the PV PHILS with the conventional algorithm when it was connected tothe PV inverter. Initially, a real-time based computing unit with mathematical modeling of the PV array is implemented and a DC amplifier and an isolated device for DC power measurement are integrated. Several experiments were performed based on theabove concept undercertain conditions, which showed that the proposed algorithm is more effective for the PV characteristic test and grid evaluation test than the conventional method.

A Study on Development and Validation of DIP to Application of Aircraft Database in Rea- Time Simulator Environment (실시간 시뮬레이터 환경에서 항공기 데이터베이스 적용을 위한 DIP 개발 및 검증에 관한 연구)

  • Kang, Im-Ju;Kim, Chong-Sup;Lee, Gi-Beom;Ahn, Sung-Jun;Shin, Sun-Young;Cho, In-Je;Ahn, Jong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.807-815
    • /
    • 2008
  • In this paper, design, development and evaluation of DIP(Database Interface Program) are presented. The main purpose of this study is to improve the simulation quality to get more realistic response of target system. The designed and developed major function is composed of flexible memory structure, efficient arithmetic database language and high speed interpolation/extrapolation algorithm. To evaluate the operation speed and accuracy of returned data, trim simulation is performed based on in-house software and, DIP is applied to existing real-time simulator such as engineering HQS(Handling Quality Simulator) to evaluate reliability and performance. The result of evlaution reveals that calculation speed and data accuracy are satisfied, and flight performance is satisfied in the real-time simulator environments.

Development of Naval Ship Propulsion System Simulator for CODLOG based ECS Verification (CODLOG 기반 ECS 검증용 함정 추진 시뮬레이터 개발)

  • Jang, Jae-hee;Kim, Dong-jin;Kim, Min-gon;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1796-1807
    • /
    • 2017
  • The domestic warship propulsion system is at the stage of a hybrid propulsion system changing from a mechanical propulsion system and the propulsion system becomes complicated so it is expected that the function of ECS(Engineering Control System) that controls and monitors the warship propulsion system becomes important. Recently the development of ECS has progressed domestically, so that verification of reliability and stability is required in the process of ECS development. The simulator to be proposed is composed of HILS, it can be divided into a shaft-line dynamics model of the simulating power transmission, a controller model of the simulating the control of the equipment, and a communication model communicating with the ECS. In this paper, we developed simulator for ECS verification for CODLOG hybrid propulsion system, set scenario, and conducted simulation.

Development of Tire/Pavement Noise Simulator (도로포장면과 타이어간의 소음 재현장비의 개발)

  • Kim, Young-Kyu;Lee, Seung-Woo;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.51-62
    • /
    • 2007
  • Recently various low-noise-pavement methods have been developed. Since tire/pavement noise is the major source of traffic noise at high speed condition, the core-technology of low-noise pavement is to produce the road surface texture that can reduce tire/pavement noise. The difficulties in the development of the low-noise pavements are high costs and time to construct test roads, since vehicles have to travel on the test roads to evaluate the noise from a particular condition of pavement surface. Tire/Pavement Noise Simulator were developed to overcome those difficulties and the reliability of developed Tire/Pavement Noise Simulator are investigated based on the simulating and measuring the noise of tire-tined concrete pavement and tire-non tined concrete pavement.

  • PDF

A Study on Implementation of Dynamic Safety System in Programmable Logic Controller for Pressurized Water Reactor

  • Kim, Ung-Soo;Seong, Poong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.91-96
    • /
    • 1996
  • The Dynamic Safety System (DSS) is a compute. based reactor protection system that has fail-safe nature and perform dynamic self-testing. In this paper, the implementation of DSS in PLC is presented for PWR. In order to choose adequate PLC implementation model of DSS, the reliability analysis is performed. The KO-RI unit 2 Nuclear power plant is selected as the reference plant, and the verification is carried out using the KO-RI unit 2 simulator FISA-2.

  • PDF

Electric Field Analysis and Design of Direct current Arresters for electric Traction Vehicles (전철 탑재용 DC 피뢰기의 설계 및 전계분포 특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1442_1442
    • /
    • 2009
  • This paper describes electric field analysis and design of direct current arresters for electric traction vehicles. Generally, DC arresters are used to protect the electric traction to limit the overvoltage invading into its inner electrical circuits. We could proposed operating voltage(Uc), the rated voltage(Ur). Finally maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the DC arresters.

  • PDF