• 제목/요약/키워드: Reliability Performance

검색결과 5,096건 처리시간 0.034초

Seismic reliability evaluation of steel-timber hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Lam, Frank;Zhou, Ruirui;Li, Minghao
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.289-297
    • /
    • 2017
  • This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.

An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions

  • Azar, Bahman Farahmand;Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.979-999
    • /
    • 2015
  • This paper proposes a novel reliability analysis method which computes reliability index, most probable point and probability of failure of uncertain systems more efficiently and accurately with compared to Monte Carlo, first-order reliability and response surface methods. It consists of Initial and Simulation steps. In Initial step, a number of space-filling designs are selected throughout the variables space, and then in Simulation step, performances of most of samples are estimated via interpolation using the space-filling designs, and only for a small number of the samples actual performance function is used for evaluation. In better words, doing so, we use a simple interpolation function called "reduced" function instead of the actual expensive-to-evaluate performance function of the system to evaluate most of samples. By using such a reduced function, total number of evaluations of actual performance is significantly reduced; hence, the method can be called Reduced Function Evaluations method. Reliabilities of six examples including series and parallel systems with multiple failure modes with truncated and/or non-truncated random variables are analyzed to demonstrate efficiency, accuracy and robustness of proposed method. In addition, a reliability-based design optimization algorithm is proposed and an example is solved to show its good performance.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Process-Structure-Property Relationship and its Impact on Microelectronics Device Reliability and Failure Mechanism

  • Tung, Chih-Hang
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권3호
    • /
    • pp.107-113
    • /
    • 2003
  • Microelectronics device performance and its reliability are directly related to and controlled by its constituent materials and their microstructure. Specific processes used to form and shape the materials microstructure need to be controlled in order to achieve the ultimate device performance. Examples of front-end and back-end ULSI processes, packaging process, and novel optical storage materials are given to illustrate such process-structure-property-reliability relationship. As more novel materials are introduced to meet the new requirements for device shrinkage, such under-standing is indispensable for future generation process development and reliability assessment.

최대 시스템 신뢰도를 위한 최적 중복 설계: 유전알고리즘에 의한 접근 (Optimum redundancy design for maximum system reliability: A genetic algorithm approach)

  • 김재윤;신경석
    • 품질경영학회지
    • /
    • 제32권4호
    • /
    • pp.125-139
    • /
    • 2004
  • Generally, parallel redundancy is used to improve reliability in many systems. However, redundancy increases system cost, weight, volume, power, etc. Due to limited availability of these resources, the system designer has to maximize reliability subject to various constraints or minimize resources while satisfying the minimum requirement of system reliability. This paper presents GAs (Genetic Algorithms) to solve redundancy allocation in series-parallel systems. To apply the GAs to this problem, we propose a genetic representation, the method for initial population construction, evaluation and genetic operators. Especially, to improve the performance of GAs, we develop heuristic operators (heuristic crossover, heuristic mutation) using the reliability-resource information of the chromosome. Experiments are carried out to evaluate the performance of the proposed algorithm. The performance comparison between the proposed algorithm and a pervious method shows that our approach is more efficient.

신뢰도 예측을 위한 수명시험 시뮬레이션 (Life Testing Simulation for Reliability Prediction)

  • 김연수;정영배
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.124-131
    • /
    • 2012
  • This paper presents a spreadsheet-based reliability prediction simulation framework for the conceptual product design stage to acquire system reliability information in timely manner. During early stage, reliability performance deals with both known and unknown failure rates and component-level and subsystem-level failure estimate to predict system reliability. A technique for performing life testing simulation using Excel spreadsheet has been developed under the such circumstances. This paper also discuss the results obtainable from this method such as reliability estimate, mean and variance of failures and confidence intervals. The resultant of this reliability prediction system is mainly benefitting small and medium-sized enterprise's field engineers.

조명용센서모듈의 신뢰성평가기준 (Reliability Assessment Criteria of Sensor Module for Lighting Fixtures)

  • 정희석;박창규;정해성;백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제10권1호
    • /
    • pp.11-24
    • /
    • 2010
  • Lighting industry is rapidly being developed as the ubiquitous society based on sensor network emerges. This kind of paradigm shift brings the society convergence of technologies which leads to smart lighting system as well as the integration of interior and sensibility control. However, standards for sensors have not been firmly established, and problems related to quality and malfunction have been brought up, thereby calling for careful approach to the enhancement and assessment of reliability of the item. In this article reliability assessment criteria for sensor module for lighting fixtures is established in terms of performance assessment criterion and reliability assessment criterion.

조명용 Power LED의 신뢰성평가기준 (Reliability Assessment Criteria of Power Light Emitting Diodes for Lighting fittings)

  • 박창규;정희석;정해성;백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권3호
    • /
    • pp.219-231
    • /
    • 2009
  • Power light emitting diodes(LED) for lighting fittings are so much environment-friendly, highly reliable and consume less energy that they are widely used at home and in industries such as electronics, telecommunications and industrial machineries. However, they are exposed to a very diverse environment and consists of complex components and, therefore needs careful approach to the enhancement and assessment of reliability of the item. In this article reliability assessment criteria for LED are established in terms of performance assessment test, reliability assessment test and accelerated test.

  • PDF

성능이 서서히 저하되는 시스템의 신뢰도 척도 (Performance-Based Reliability Measures for Gracely Degrading Systems: the Concept)

  • Kim, Yon-Soo;Park, Sang-Min
    • 산업경영시스템학회지
    • /
    • 제17권32호
    • /
    • pp.227-232
    • /
    • 1994
  • In the performance domain, physical performance is a measure that represents some degree of system, subsystem, component or device success in a continuous sense, as opposed to a classical binomial sense (success or failure). If applicable sensing and monitoring means exist, physical performance can be observed over time, along with explanatory variables or covariables. Performance-based reliability represents the probability that performance will remain satisfactory over a finite period of time or usage cycles in the future when a performance critical limit (which represents an appropriate definition of failure in terms of performance) is set at a fixed level, based on application requirements. In the case of inadequate knowledge of the failure mechanics, this physical based empirical modeling concept along with performance degradation knowledge can serve as an important analysis tool in reliability work in product and process improvement.

  • PDF

자이로의 신뢰성 예측모델에 관한 연구 (A Study on The Feliability Predication Model of Gyroscope)

  • 백순흠;문홍기;김호룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.475-481
    • /
    • 1993
  • The objective of this study is to develope the reliability prediction model for Float Rated Integrating Gyroscope( :FRIG) at maximum loading. The equation of motion for FRIG is firstly derived to set up the reliability prediction model. To analysis reliability or all parts of the gyro is not easy due to their complicated structure. Therefore the failure parts are chosen by Failure Mode Effective Analysis (:FMEA). F.E.M is utilized to calculate loads for the selseced rotating assembly and pivot / jewel. The technical reliability is calculated by applying reliability design theory with these results and the performance reliability is sought through distribution estimation with error test data. The bulk reliability of gyroscope is sought by applying the two results. The present prediction results are compared with the accumulation time in good agreement.

  • PDF