• Title/Summary/Keyword: Relevance vector machine

Search Result 26, Processing Time 0.023 seconds

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

Response prediction of laced steel-concrete composite beams using machine learning algorithms

  • Thirumalaiselvi, A.;Verma, Mohit;Anandavalli, N.;Rajasankar, J.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.399-409
    • /
    • 2018
  • This paper demonstrates the potential application of machine learning algorithms for approximate prediction of the load and deflection capacities of the novel type of Laced Steel Concrete-Composite (LSCC) beams proposed by Anandavalli et al. (Engineering Structures 2012). Initially, global and local responses measured on LSCC beam specimen in an experiment are used to validate nonlinear FE model of the LSCC beams. The data for the machine learning algorithms is then generated using validated FE model for a range of values of the identified sensitive parameters. The performance of four well-known machine learning algorithms, viz., Support Vector Regression (SVR), Minimax Probability Machine Regression (MPMR), Relevance Vector Machine (RVM) and Multigene Genetic Programing (MGGP) for the approximate estimation of the load and deflection capacities are compared in terms of well-defined error indices. Through relative comparison of the estimated values, it is demonstrated that the algorithms explored in the present study provide a good alternative to expensive experimental testing and sophisticated numerical simulation of the response of LSCC beams. The load carrying and displacement capacity of the LSCC was predicted well by MGGP and MPMR, respectively.

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.

Interactive Semantic Image Retrieval

  • Patil, Pushpa B.;Kokare, Manesh B.
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.349-364
    • /
    • 2013
  • The big challenge in current content-based image retrieval systems is to reduce the semantic gap between the low level-features and high-level concepts. In this paper, we have proposed a novel framework for efficient image retrieval to improve the retrieval results significantly as a means to addressing this problem. In our proposed method, we first extracted a strong set of image features by using the dual-tree rotated complex wavelet filters (DT-RCWF) and dual tree-complex wavelet transform (DT-CWT) jointly, which obtains features in 12 different directions. Second, we presented a relevance feedback (RF) framework for efficient image retrieval by employing a support vector machine (SVM), which learns the semantic relationship among images using the knowledge, based on the user interaction. Extensive experiments show that there is a significant improvement in retrieval performance with the proposed method using SVMRF compared with the retrieval performance without RF. The proposed method improves retrieval performance from 78.5% to 92.29% on the texture database in terms of retrieval accuracy and from 57.20% to 94.2% on the Corel image database, in terms of precision in a much lower number of iterations.

A Study on Online Interface for Research Information Systems : Information Organization for Adaptive Interface (학술정보시스템의 온라인 인터페이스에 관한 연구 : 적응형 인터페이스를 위한 정보조직 및 활용)

  • Kim Mi-Hyeon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.2
    • /
    • pp.259-276
    • /
    • 1998
  • This study is to contribute to develop adaptive information systems meeting inside information needs as well as represented information needs, and dealing with every levels of users and user's preferences. Also, this study is to present a method of developing adaptive information system through developing user profile using machine teaming and decision tree, applying relevance feedback using merged vector, and applying user feedback.

  • PDF

On-board Capacity Estimation of Lithium-ion Batteries Based on Charge Phase

  • Zhou, Yapeng;Huang, Miaohua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.733-741
    • /
    • 2018
  • Capacity estimation is indispensable to ensure the safety and reliability of lithium-ion batteries in electric vehicles (EVs). Therefore it's quite necessary to develop an effective on-board capacity estimation technique. Based on experiment, it's found constant current charge time (CCCT) and the capacity have a strong linear correlation when the capacity is more than 80% of its rated value, during which the battery is considered healthy. Thus this paper employs CCCT as the health indicator for on-board capacity estimation by means of relevance vector machine (RVM). As the ambient temperature (AT) dramatically influences the capacity fading, it is added to RVM input to improve the estimation accuracy. The estimations are compared with that via back-propagation neural network (BPNN). The experiments demonstrate that CCCT with AT is highly qualified for on-board capacity estimation of lithium-ion batteries via RVM as the results are more precise and reliable than that calculated by BPNN.

Spectrum Sensing for Cognitive Radio based on RVM

  • Shi, Shangkun;Yan, Jiao;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.86-88
    • /
    • 2019
  • In a complex geographical environment, communication quality of communication equipment is being seriously challenged. Secondary Users(SUs) must make the best possible use the idle spectrums that Primary Users(PUs) do not use and change spectrum frequently. Using the relevance vector machine(RVM) to establish a signal noise Ratio(SNR) Model for interference information and bit error rate(BER). Through the model and real-time interference information, the minimum channel SNR meeting the BER requirements of communication equipment can be predicted, and we can also calculate the minimum transmitted power. According to the simulation results, this method has better performance for selecting available channel and restraining interference.

Informal Quality Data Analysis via Sentimental analysis and Word2vec method (감성분석과 Word2vec을 이용한 비정형 품질 데이터 분석)

  • Lee, Chinuk;Yoo, Kook Hyun;Mun, Byeong Min;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.1
    • /
    • pp.117-128
    • /
    • 2017
  • Purpose: This study analyzes automobile quality review data to develop alternative analytical method of informal data. Existing methods to analyze informal data are based mainly on the frequency of informal data, however, this research tries to use correlation information of each informal data. Method: After sentimental analysis to acquire the user information for automobile products, three classification methods, that is, $na{\ddot{i}}ve$ Bayes, random forest, and support vector machine, were employed to accurately classify the informal user opinions with respect to automobile qualities. Additionally, Word2vec was applied to discover correlated information about informal data. Result: As applicative results of three classification methods, random forest method shows most effective results compared to the other classification methods. Word2vec method manages to discover closest relevant data with automobile components. Conclusion: The proposed method shows its effectiveness in terms of accuracy and sensitivity on the analysis of informal quality data, however, only two sentiments (positive or negative) can be categorized due to human errors. Further studies are required to derive more sentiments to accurately classify informal quality data. Word2vec method also shows comparative results to discover the relevance of components precisely.