• Title/Summary/Keyword: Release effect

Search Result 2,882, Processing Time 0.034 seconds

The Essential Oil of Artemisia iwayomogi Kitamura Induces Apoptosis on Human Oral Epidermoid Carcinoma Cells

  • Jeong, Mi-Ran;Cha, Jeong-Dan;Lee, Kyung-Yeol;Kil, Bong-Seop;Han, Jong-Hyun;Lee, Young-Eun
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.531-536
    • /
    • 2007
  • The aerial part of Artemisia iwayomogi Kitamura has traditionally been used for inflammation, infectious disease, cancer, pyretic, diuretic, liver protective effect, and choleretic purposes in Korea. We investigated that the essential oil induces apoptosis in KB cell as evidenced by Hoechst-33258 dye staining, flow cytometry (cell cycles), and DNA fragmentation for nuclear condensation and Western blotting for activation of caspases-3, -8, -9, Bax, Bcl-2, cytochrome c, and poly (ADP-ribose) polymerase (PARP) cleavage. In the present study, we found that the essential oil could induce apoptosis in KB cells, as characterized by DNA fragmentation, activation of caspase-3, -8, and -9, and PARP cleavage. The efficacious induction of apoptosis was observed as a dose-dependent. The essential oil-induced apoptotic cell death was accompanied by up-regulation of Bax and down-regulation of Bcl-2. The essential oil also caused the loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytosol. These findings indicate that mitochondrial pathways might be involved in the essential oil-induced apoptosis and enhance our understanding of the anticancer function of the essential oil in herbal medicine.

Effect of the Inhibition of Platelet Activating Factor on Oxidative Lung Injury Induced by Interleukin-$1\;{\alpha}$

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.479-491
    • /
    • 1998
  • In order to know the pathogenesis of adult respiratory distress syndrome (ARDS) in association with the oxidative stress by neutrophils, the role of platelet activating factor (1-0-alkyl-2-acetyl-snglycero-3-phosphocholine, PAF) was investigated during acute lung injury induced by interleukin- $1{\alpha}$ (IL-1) in rats. An insufflation of IL-1 into the rat's trachea increased the acetyltransferase activity in the lung and the increase of PAF content was followed. As evidences of acute lung injury by neutrophilic respiratory burst, lung leak index, myeloperoxidase activity, numbers of neutrophils in the bronchoalveolar lavage fluid, neutrophilic adhesions to endothelial cells and NBT positive neutrophils were increased after IL-1 treatment. In addition, a direct instillation of PAF into the trachea caused acute lung leak and the experimental results showed a similar pattern in comparison with IL-1 induced acute lung injury. For the confirmation of oxidative stress during acute lung leak by IL-1 and PAF, a histochemical electron microscopy was performed. In IL-1 and PAF treated lungs of rats, the deposits of cerrous perhydroxide were found. To elucidate the role of PAF, an intravenous injection of PAF receptor antagonist, WEB 2086 was given immediately after IL-1 or PAF treatment. WEB 2086 decreased the production of hydrogen peroxide and the acute lung leak. In ultrastructural study, WEB 2086 mitigated the pathological changes induced by IL-1 or PAF. The nuclear factor kappa B (NFkB) was activated by PAF and this activation was inhibited by WEB 2086 almost completely. Based on these experimental results, it is suggested that the PAF produced in response to IL-1 through the remodeling pathway has the major role for acute lung injury by neutrophilic respiratory burst. In an additional experiment, we can also come to conclude that the activation of the NFkB by PAF is thought to be the fundamental mechanism to initiate the oxidative stress by neutrophils causing release of proinflammatory cytokines and activation of phospholipase $A_2$.

  • PDF

Anti-inflammatory Effect of Evodia Officinalis $D_{ODE}$ in Mouse Macrophage and Human Vascular Endotherial Cells (마우스 대식세포 및 사람 혈관 내피세포에서 오수유(Evodia officinalis $D_{ODE}$) 메탄올 추출물의 항염증 효과)

  • Yun, Hyun-Jeung;Heo, Sook-Kyoung;Lee, Young-Tae;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2008
  • Objectives : Evodia officinalis DODE (EO), an herbal plant, has been widely used in traditional Korean medicine for the treatment of vascular diseases such as hypertension. The crude extract of EO contains phenolic compounds that are effective in protecting liver microsomes, hepatocytes, and erythrocytes against oxidative damage. But EO has been little found to have an anti-inflammatory activity. We investigated anti-inflammatory activity of EO in RAW 264.7 cells and human umbilical vein endothelial cells (HUVECs). Methods : Cytotoxic activity of EO on RAW 264.7 cells was investigated by using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines were measured by ELISA kit. The levels of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression were measured by flow cytometer. Results : EO decreased LPS-induced NO production in RAW 264.7 cells. The inhibitory activity of EO on LPS-induced NO release is probably associated with suppressing TNF-${\alpha}$, IL-6 and MCP-1 formation. These results indicate that EO has potential as an anti-inflammatory agent. Moreover, EO decreased TNF-${\alpha}$-induced IL-8, IL-6 production, and ICAM-1 and VCAM-1 expression in HUVECs. Conclusions : EO inhibits TNF-${\alpha}$-induced inflammation via decreasing cytokines production and adhesion molecules expression. These results indicate that EO has potential as an anti-inflammation and anti-artherosclerosis agent.

  • PDF

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

Heat Transfer Chracteristics in a Fluidized bed Heat Storage System Using Encapsulated PCM (캡슐화된 PCM을 이용한 유동층 축열조에서 열전달 특성 연구)

  • Yoon, Y.H.;Han, G.Y.;Kang, Y.H.;Kwak, H.Y.;Lee, T.K.;Jeon, M.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.89-94
    • /
    • 1998
  • The heat transfer characteristics of a fluidized bed latent heat storage system using encapsulated PCM was investigated. The cylindrical test section has the dimension of 50 mm I.D. and 40 cm in height. The phase change material(PCM) was the sodium acetate and was encapsulated by the multiple layers of PMMA and paraffin wax. The size of encapsulated PCM was $2{\sim}3mm$ and melting point was $58^{\circ}C$. The instantaneous heat storage and heat release rates were determined and the instantaneous heat transfer coefficient based on the fluidized bed volume was also determined. The effect of inlet temperature and velocity of heat transfer fluid on the heat transfer coefficient was also investigated.

  • PDF

NEW ANTI-AGING AND ANTI-WRINKLE COSMETIC INGREDIENT : INNER NUTSHELL OF CASTANEA MOLLISIMA BL (CHESTNUT)

  • Kim, Beom-Jun;Kim, Jeong-Ha;Kim, Hyun-Pyo;Heo, Moon-Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.17-23
    • /
    • 1998
  • Inner nutshell of Castanea mollisima BL (chestnut) has been used as an anti-aging and anti-wrinkle agent from the ancient time in east Asia. In order to develop new anti-aging and anti-wrinkle, ethanolic extract of inner nutshell of Castanea mollisima BL (Cor-285) was prepared and various biological activities were evaluated. Cor-285 showed potent antioxidant activity, Especially, Cor-285 possessed potent free radical scavenging activity in vitro (IC50:7.6 g/ml) compared to gallic acid (IC50:12.5 g/ml), Cor-285 showed the preventive effect against UV-induced cytotoxicity of fibroblast at concentration of 25-250 g/ml. When Cor-285 was evaluated for its anti-allergic activity, it effectively inhibited histamine release from mast cells induced by compound 48/80 (86% inhibition at 10 mg/ml). The inhibitory activity was stronger than that of glycyrrhiznate. Cor-285 also showed in vivo inhibition against delayed hypersensitivity as well as croton-oil induced ear edema in mice when topically applied These results strongly suggest that Cor-285 may reduce immunoregulatory 1 inflammatory skin trouble. From the attempts to isolate the constituents, citropten (simple coumarin) and ellagic acid, a well known radical scavenger, were isolated. In a clinical trial of twenty healthy volunteers with aged skin,6 weeks application of Cor-285 (3% cream) decreased wrinkle about 26% and increased moisturizing 20% on the skin. All of these results indicate that Cor-285 may be an effective anti-aging and anti-wrinkle agent.

  • PDF

Depurination of Nucleosides and Calf Thymus DNA Induced by 2-Bromopropane at the Physiological Condition

  • Sherchan, Jyoti;Choi, Ho-Young;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2309-2317
    • /
    • 2009
  • Depurination, the release of purine bases from nucleic acids by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Though cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a replacement for chloroflurocarbons and 1,1,1-trichloroethane as a cleaning solvent in electronics industry. However, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. Owing to the toxicity of 2-BP, there has been a tendency to use 1-BP as an alternative cleaning solvent to 2-BP. However, 1-BP has also been reported to be neurotoxic in rats. Though $N^7$-guanine adduct of 2-BP has been reported previously, massive depurination of the nucleosides and calf thymus DNA was observed in this study. We incubated the nucleosides (ddG, dG, guanosine, ddA, dA and adenosine) with excess amount 2-BP at the physiological condition (pH 7.4, $37\;{^{\circ}C}$), which were analyzed by HPLC and LC-MS/MS. In addition, the time and dose response relationship of depurination in nucleosides induced by 2-bromopropane at the physiological condition was investigated. Similarly, incubation of calf-thymus DNA with the excess amount 2-BP at the physiological condition was also performed. In addition, the time and dose response relationship of depurination in calf-thymus DNA induced by 2-BP at the physiological condition was investigated. Those results suggest that the toxic effect of 2-BP could be both from the depurination of nucleosides and DNA adduct formation.

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid;Kim, Si-Kwan;Cha, Kyu-Min;Jeong, Min-Sik;Ghosh, Prachetash;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.593-602
    • /
    • 2020
  • Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

Hit Rate Prediction Algorithm for Laser Guided Bombs Using Image Processing (영상처리 기술을 활용한 레이저 유도폭탄 명중률 예측 알고리즘)

  • Ahn, Younghwan;Lee, Sanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • Since the Gulf War, air power has played a key role. However, the effect of high-tech weapons, such as laser-guided bombs and electronic optical equipment, drops significantly if they do not match the weather conditions. So, aircraft that are assigned to carry laser-guided bombs must replace these munitions during bad weather conditions. But, there are no objective criteria for when weapons should be replaced. Therefore, in this paper, we propose an algorithm to predict the hit rate of laser-guided bombs using cloud image processing. In order to verify the accuracy of the algorithm, we applied the weather conditions that may affect laser-guided bombs to simulated flight equipment and executed simulated weapon release, then collected and analyzed data. Cloud images appropriate to the weather conditions were developed, and applied to the algorithm. We confirmed that the algorithm can accurately predict the hit rate of laser-guided bombs in most weather conditions.

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery

  • Park, Tae-Jun;Lim, Jung-Bin;Son, Jong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.357-364
    • /
    • 2014
  • Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.