• Title/Summary/Keyword: Relay Networks

Search Result 527, Processing Time 0.027 seconds

Enhanced MPR Selection Strategy for Multicast OLSR

  • Matter, Safaa S.;Al Shaikhli, Imad F.;Hashim, Aisha H.A.;Ahmed, Abdelmoty M.;Khattab, Mahmoud M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.137-144
    • /
    • 2022
  • Wireless community networks (WCNs) are considered another form of ownership of internet protocol (IP) networks, where community members manage and own every piece of equipment in a decentralized way, and routing for traffic is done in a cooperative manner. However, the current routing protocols for WCNs suffer from stability and scalability issues. In this paper, an enhanced routing protocol is proposed based on the optimized link state routing (OLSR) protocol to meet the standards of efficiency in terms of stability and scalability. The proposed routing protocol is enhanced through two phases: multicasting expansion and multipoint relay (MPR) selection based on an analytical hierarchical process (AHP). The experimental results demonstrate that the proposed routing protocol outperforms the OLSR protocol in terms of network control overhead and packet delivery ratio by 18% and 1% respectively.

Hybrid Multipath Routing in Mobile Ad Hoc Networks (MANET환경에서 적용 가능한 복합적 다중 라우팅 기술)

  • Ninh, Khanhchi;Jung, Sou-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • One of the most important VANET applications is providing active safety by broadcasting emergency messages. In order to prevent broadcast storm of flooding-based broadcasting scheme in which any node receiving message will rebroadcast, the existing protocols use the different methods to limit the number of relay nodes. Nevertheless, the existing protocols have low delivery ratio with high traffic density and cause message overhead. Currently, the dramatic increase in the number of vehicles equipped with Global Positioning System (GPS) and onboard radar created new application scenarios that were not feasible before. Consequently, we proposed a broadcasting protocol that selects relay node by using GPS-based position information and detecting neighboring vehicles with the help of onboard radar to. Simulation results show that our proposed protocol has better performance than the existing schemes.

Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems

  • Zhang, Aihua;Yang, Shouyi;Li, Jianjun;Li, Chunlei;Liu, Zhoufeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3498-3511
    • /
    • 2016
  • We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.

Novel Interference Cancellation Scheme in Cooperation Communication Environment (협력통신 환경에서의 새로운 간섭제거 기법)

  • Kim, Yoon Hyun;Park, Young Sik;Shin, Dong Soo;Hwang, Yu Min;Kim, Jin Young;Rho, Jung Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.98-103
    • /
    • 2014
  • In this paper, we propose and analyze a novel interference cancellation scheme in cooperation communication environment in which a large number of users exist. In cooperative communication system consisting a source, destination, and relay, ad-hoc groups undergo a rapid degradation because of interference data form adjacent ad-hoc groups. To solve these problems, we propose Zero Forcing (FC) and Minimum Mean Square Error (MMSE) and make a dent in the magnitude of interference. Finally, we can obtain orignal data using Successive Interference Cancellation (SIC). The performance of proposed scheme is analyzed in terms of a bit error probability. The results of the paper can be applied to design of various ad-hoc networks for cooperation communication systems.

Dynamic Buffer Allocation for Seamless IPTV Service Considering Handover Time and Jitter (이동망에서 IPTV 서비스 제공 시 핸드오버 시간과 지터를 고려한 동적 버퍼 할당 기법)

  • Oh, Jun-Seok;Lee, Ji-Hyun;Lim, Kyung-Shik
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.391-398
    • /
    • 2008
  • To provide IPTV service over mobile networks, the mechanism that reduce packet loss and interrupt of multimedia service during the handover should be supported. Especially, buffering based mechanism is preferable for supporting IPTV services in the way of preserving streaming service using stored data and recovering non-received data after handover. But previous research doesn't consider the buffer allocation for applying various environments which can change handover time or end to end delay of relay node. This paper propose DBAHAJ mechanism that optimize buffer size of mobile nodes and relay node for supporting seamless IPTV service over mobile environments. Mobile node determines buffer size by checking handover time and maximum difference of sequence to keep playing video data. And multicast agent recovers packet loss during the handover by sending buffered data. By these two procedure, node supports seamless IPTV service on mobile networks. We confirm performance of this mechanism on NS-2 simulator.

Designing a Path Management Method in Large-scale Multiple Sensor Networks (대규모 다중 센서 네트워크에서 효과적인 경로 관리 기법)

  • Lim, Yu-Jin;Park, Jae-Sung;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.3
    • /
    • pp.205-212
    • /
    • 2008
  • In the environment with multiple heterogeneous wireless sensor networks with a single point of sensed data collection or a gateway (GW), relay points (RPs) may be required for the energy efficient delivery of sensed data from static or mobile sinks to the GW. The optimal placement of RPs becomes an even more difficult problem if static sinks are dynamically added or the trajectory of mobile sinks can not be known in advance. In order to resolve this problem, we propose a mechanism to deploy RPs in a grid pattern and to use the tree-based relaying network for reducing the cost of the RP and for reducing the control overhead incurred by the route setup from sinks to the GW. For the performance evaluation of our proposed mechanism, we have carried out a numerical analysis on a single route setup from a sink to the GW and, for more general performance evaluations, ns-2 based simulations have been carried out. According to the performance evaluation results, our tree-based relaying network mechanism outperforms that based on AODV in terms of the data delivery time, the network service time and the control overhead.

Performance Analysis of 1-2-1 Cooperative Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 1-2-1 협력 프로토콜에 관한 연구)

  • Choi, Dae-Kyu;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.113-119
    • /
    • 2008
  • Conventional 1-1-1 cooperative protocol offers path-loss gain as advantage of multi-hop and spatial diversity which is equivalent to MIMO system. This protocol is enable to get higher reliability and reduction of power consumption than those of the single-hop or multi-hop. But the 1-1-1 cooperative protocol get only the diversity order 2 and limited path-loss reduction gain because this protocol has a single cooperative relay. We propose 1-2-1 cooperative protocol using two cooperative relays R1, R2. The 1-2-1 cooperative protocol can improve path-loss reduction and increase diversity order 3. Moreover, the cooperative relay R2 attains diversity order 2. The signaling method in transmission uses DF (Decode and Forward) or DR (Decode and Reencode) and 1-2-1 DF/DR cooperative protocol are applied to clustering based wireless sensor networks (WSNs). Simulations are performed to evaluate the performance of the protocols under Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

  • PDF

A Spectrally Efficient Relaying Scheme with Multiple Antennas for Next-Generation Cellular Networks (차세대 이동통신 망을 위한 다중안테나 기반의 주파수 효율적 데이터 중계 방식)

  • Jung, Bang-Chul;Kang, Min-Seok;Lee, Sang-Wook;Jeon, Seong-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1675-1686
    • /
    • 2011
  • We propose a spectrally efficient relaying scheme with multiple antennas for cellular networks which consist of base station (BS), relay station (RSs), and mobile stations (MSs). In general, a BS has more antennas than an RS or an MS. By using multiple antennas, a BS can support another MS with the same frequency resource, where an RS transmits data to a specific MS. In this case, the MS receiving data form an RS also receives the interference form the BS because the BS also uses the same frequency resource at the same time. In this paper, we propose ing and pre-whitening techniques as a pre-coding scheme at the BS for reducing the interference at the MS receiving data from the RS.

Routing Protocol for Wireless Sensor Network Considering Data Transmission Stability and Load Quantity (선형적 데이터 전달의 안정성과 부하량을 고려한 무선 센서 네트워크 라우팅 프로토콜)

  • Hwang, Min;Cheon, Seung-Hwan;You, Jin-Ho;Kien, Nguyen Trung;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.111-119
    • /
    • 2007
  • Sensor networks are needed for special purposes such as collecting or transmitting information by using sensor devices, for which various routing protocols have been proposed. Among existing protocols, the modified PEGASIS routing technique is known to be effective when applied to cases with directional transmissions of data. However it does not consider recovery from errors or guaranteeing stability in data transmission, while sensor devices performing repetitive relays and controls are prone to errors. In this paper, a double relay routing protocol for Zigbee based sensor networks where data are transfered reliably with a linear direction. The proposed protocol is effective in the sense that it secures the relaible transmission of data with minimal energy consumption based on a directional data transfer. A streetlight control system has been presented as an application of the proposed protocol.

Interference Neutralization for Small-Cell Wireless Networks (스몰셀 무선망 간섭 상쇄 기법 연구)

  • Jeon, Sang-Woon;Jung, Bang Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1117-1124
    • /
    • 2013
  • As the recently soaring wireless traffic, small-cell techniques have been actively studied in order to support such a wireless demand for cellular wireless networks. This paper focuses on the inter-cell interference neutralization to resolve the main barrier for implementing small-cell cellular networks. Assuming that each message is delivered to the final destination by the help of base stations or relays, ergodic interference neutralization is proposed, which exploits the time-varying nature of wireless channels. The previous approach based on amplify-and-forward (AF) suffers from severe performance degradation in the low signal-to-noise (SNR) regime due to noise amplification. On the other hand, the proposed interference neutralization based on recently developed compute-and-forward (CF) fixes such a problem and improves the performance in the low SNR regime.