• Title/Summary/Keyword: Relaxation modulus

Search Result 69, Processing Time 0.024 seconds

Rheological Properties of EPM end EPDM Rubbers (EPM 및 EPDM 고무의 유변학적 특성)

  • Kim, Byung-Kyu;Kim, Chang-Kee;Park, Chan-Young
    • Elastomers and Composites
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 1990
  • Linear viscoelastic properties of 11 types of EPDM and 1 type of EPM rubbers have been measured at $210^{\circ}C$, using a RDS(Rheometrics dynamic spectrometer). The data base, i.e., complex viscosity, storage modulus, loss modulus, loss tangent and relaxation spectrum of the sample should be useful for rubber blending and compounding.

  • PDF

Experimental study on long-term behavior of prestressed steel I-beam-concrete composite beams

  • Sung, Deokyong;Hong, Seongwon
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.671-683
    • /
    • 2022
  • To investigate and predict the long-term time-dependent behavior, such as creep, shrinkage, and relaxation of PS strands, and prestress loss in prestressed steel-concrete composite beams, named Precom, full-scale tests were conducted and the collected data were compared with those obtained from the two proposed analytical models. The combined effective modulus method (EMM)-empirical model proposed with a flowchart considered the creep effect to determine the prestress loss. Conversely, the age-adjusted effective modulus method (AEMM) with CEB-FIP equation was developed to account for the concrete aging. The results indicated that the AEMM with CEB-FIP model predicts the long-term behavior of Precom effectively.

Time-Dependent Behavior of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의한 프리스트레스트 콘크리트 교량의 장기 거동 해석)

  • 오병환;최계식;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.73-76
    • /
    • 1989
  • A numerical procedure is developed to analyze the time-dependent behavior of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varing modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities.

  • PDF

Effects of Functional Properties of Soy Protein Isolate and Qualities of Soybean Curd upon Proteolytic Hydrolysis (효소처리가 대두단백질의 기능특성과 두부의 품질에 미치는 영향)

  • Han, Jin-Suk;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.294-299
    • /
    • 1992
  • This study was to examine the effect of functional properties of soy protein isolate(SPI) and qualities of soybean curd upon proteolytic hydrolysis. SPI was hydrolyzed using proteolytic enzyme, bromelain. The protein content of SPI by microkjeldahl method was 84% and the degree of hydrolysis in modified soy protein isolate(MSPI) was 2.7%. The solubility of MSPI was higher than that of control at various pH tested and proteolytic hydrolysis was increased emulsion formation and foam expansion while decreased emulsion stability, foam stability and calcium precipitation. Modified soybean curdI, standard soybean milk: Modified soybean milk=3:1, was soft and springy soybean curd when the texture properties of soybean curd were tested by texture profile analysis using Instron and sensory evaluation. The rheological model of soybean curds was investigated by stress relaxation test. The analysis of relaxation curve revealed that the rheological behavior of soybean curds could be expressed by 7-element generalized Maxwell model. The equilibrium modulus and modulus of elasticity decreased as the ratio of modified soybean milk was increased.

  • PDF

Stress Relaxation Coefficient Method for Concrete Creep Analysis of Composite Sections (합성단면의 콘크리트 크리프 해석을 위한 이완계수법)

  • Yon, Jung-Heum;Kyung, Tae-Hyun;Kim, Da-Na
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • The concrete creep deformation of a hybrid composite section can cause additional deformation of the composite section and the stress relaxation of pre-compressive stress on the concrete section due to partial restraint of the deformation. In this study, the stress relaxation coefficient method (SRCM) is derived for simple analysis of complicate hybrid or composite sections for engineering purpose. Also, an equation of the stress relaxation coefficient (SRC) required for the SRCM is proposed. The SRCM is derived with the parameters of a creep coefficient, section and loading properties using the same method as the constant-creep step-by-step method (CC-SSM). The errors of the SRCM is improved by using the proposed SRC equation than the average SRC's which were estimated from the CC-SSM. The root mean square error (RMSE) of the SRCM with the proposed SRC equation for concrete with creep coefficient less than 3 was less than 1.2% to the creep deformation at the free condition and was 3.3% for the 99% reliability. The proposed SRC equation reflects the internal restraint of composite sections, and the effective modulus of elasticity computed with the proposed SRC can be used effectively to estimate the rigidity of a composite section in a numerical analysis which can be applied in analysis of the external restrain effect of boundary conditions.

Structural analysis of cracked R.C. members subjected to sustained loads and imposed deformations

  • Mola, F.;Gatti, M.C.;Meda, G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.637-650
    • /
    • 2001
  • A structural analysis of cracked R.C. members under instantaneous or sustained loads and imposed displacements is presented. In the first part of the paper the problem of deriving feasible moment-curvature diagrams for a long term analysis of R.C. sections is approached in an exact way by using the Reduced Relaxation Function Method in state I uncracked and the method suggested by CEB in state II cracked. In both states the analysis of the main parameters governing the problem has shown that it is possible to describe the concrete creep behaviour in an approximate way by using the algebraic formulation connected to the Effective Modulus Method. In this way the calculations become quite simple and can be applied in design practice without introducing significant errors. Referring to continuous beams, the structural analysis is then approached in a general way, applying the Force Method and the Principle of Virtual Works. Finally, considering single members, the structural analysis is performed by means of a graphical procedure based on the application of feasible moment-rotation diagrams which allow to easily solve various structural problems and to point out the most interesting aspects of the long term behaviour of cracked R.C. members with rigid or elastically deformable redundant restraints.

Structure Development and Dynamic Properties in High-speed Spinning of High Molecular Weight PEN/PET Copolyester Fibers

  • Im, Seung-Soon;Kim, Sung-Joong
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • The structure development and dynamic properties of fibers produced by high-speed spinning of P(EN-ET) random copolymers were investigated. The as-spun fibers were found to remain amorphous up to the spinning speed of 1500 m/min, and subsequent increases in speed resulted in the crystalline domains containing primarily $\alpha$ crystalline modification of PEN. The f modification was not found up to spinning speeds of 4500 m/min. On the other hand, annealing of constrained fibers spun at the 2100 m/min at 180,200, and 240^{\circ}C$ exhibited $\beta$-form crystalline structure, while the annealed fibers spun in 600-1500 m/min range exhibited dominantly $\alpha$-form. However $\beta$-form crystals disappeared above the spinning speed of 3000 m/min. With increasing spinning speeds from 600 to 4500 m/min, the storage modulus of as-spun fibers increased continuously and reached a value of about 10.4 spa at room temperature. The tan $\delta$curves showed the $\alpha$-relaxation peak at about 155-165^{\circ}C$, which is considered to correspond to the glass transition. The $\alpha$-relaxation peaks became smaller and broader, and shift to higher temperatures as the spinning speed increases, meaning that molecular mobility in the amorphous region is restricted by increased crystalline domain.

A study on Creep of Plate PMMA in Thermal-Nanoindentation Process for Hyperfine pit structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입 공정에서의 평판형 PMMA의 크립현상에 관한 연구)

  • Lee, E.K.;Jung, Y.N.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.273-276
    • /
    • 2008
  • Thermoplastic resin takes place stress relaxation and creep according to temperature and time. In room temperature, time dependent deformation (TDD) of polymer was carried out at previous study. In this study, it evaluates time dependent deformation to relate temperature. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is important to control pattern depth for change of indent depth by creep when using Nanoindenter. For evaluating TDD at high temperature, it is occurred thermal-nanoindentation test by changing hold time at maximum load. Temperature is putted at $90^{\circ}C$, hold time at maximum loads are putted at 1, 10, 50, 100, 200, 300 and 500s.

  • PDF

Rheological Studies of the Fish Protein upon the Thermal Processing (열처리 공정에 따른 생선단백질의 물성 연구)

  • Kang, Byung-Sun;Kim, Byung-Yong;Lee, Jae-Kwun
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.103-109
    • /
    • 1994
  • Changes in the rheological properties and the linear viscoelasticity of fish protein gel upon the thermal processing were studied by using mathematical models with stress-relaxation data. The linear viscoelasticity of surimi gel was observed in the range of the true strain $0.105{\sim}0.693$ and cross-head speed $50{\sim}250\;mm/min$ applied in this study. The results of the generalized Maxwell analysis showed that the magnitudes of elastic elements $(E,\;E_e)$ were increased, but the viscous element $({\eta}) $was decreased, as the cross-head speeds and strain levels were increased. Compared to the protein gel heated directly at $90^{\circ}C$ without preheating, the protein gel pretreated at $4^{\circ}C$ and $40^{\circ}C$ showed the higher elastic modulus, but showed different trends in the viscous component, depending on the rheological model applied. Thus, the approaching methods and curve fitting of two mathematical models of stress-relaxation to describe the viscoelastic properties of fish protein gel were discussed.

  • PDF

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.