• Title/Summary/Keyword: Relative wave height

Search Result 55, Processing Time 0.019 seconds

Effects of tsunami waveform on overtopping and inundation on a vertical seawall (직립호안에서 지진해일 파형이 월파와 침수에 미치는 영향)

  • Lee, Woodong;Kim, Jungouk;Park, Jongryul;Hur, Dongsoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.643-654
    • /
    • 2018
  • In order to generate the stable tsunami in a numerical wave tank, a two-dimensional numerical model, LES-WASS-2D has been introduced the non-reflected wave generation system for various tsunami waveforms. And then, comparing to existing experimental results it is revealed that computed results of the LES-WASS-2D are in good agreement with the experimental results on spatial and temporal tsunami waveforms in the vicinity of a seawall. It is shown that the applied model in this study is applicable to the numerical simulations on tsunami overtopping and inundation. Using the numerical results, the characteristics of overtopping and inundation on a seawall are also discussed with volume ratio of tsunami and relative tsunami height. The wider the tsunami waveform, tsunami overtopping quantity and inundation distances are linearly increased. Therefore, the hydraulic characteristics is highly likely to be underestimated against the real tsunami if the solitary wave of approximation theory is applied for the overtopping/inundation simulations due to a tsunami.

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

Experiments on Stability of Armor Rocks on Rear Slope of Rubble Mound Structures under Wave Overtopping Condition with Rectangular Crest Element (월파조건에서 직사각형 상치콘크리트가 설치된 경사제 항내측 사면에 거치된 피복석의 안정성 실험)

  • Young-Taek Kim;Jong-In Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.5
    • /
    • pp.102-108
    • /
    • 2023
  • In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The armor units on the rear slope were rocks. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and rear side slope of rubble mound structures. The crest elements were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The damage rate (S =2) was applied and the stable wave height was measured for each test condition. The results were suggested as the armor weight ratio of the rear side slope(armor rock) to the sea side slope (tetrapod) in relation to the relative crest height.

Design of a ship model for hydro-elastic experiments in waves

  • Maron, Adolfo;Kapsenberg, Geert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1130-1147
    • /
    • 2014
  • Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.

Correlation between Storm Waves and Far-Infra-Gravity Waves Observed in kkye Harbor (옥계항에서 관측된 폭풍파와 저중력파의 상호관계)

  • 정원무;채장원;박우선;이광수;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.209-229
    • /
    • 2001
  • Simultaneous field measurements of short-period and long-period waves were made at five stations inside or outside Okkye Harbor, which is located in the east coast of Korea. Based on the measured data, spacial and temporal variations of the long-period wave energy were examined. Three smoothing methods were examined for the spectral estimates: fixed interval averaging method, incremental interval averaging method, and moving averaging method. It was shown that a proper smoothing method should be chosen depending on the period of first resonant mode and the length of data being used. By comparing the results obtained using the long-term data with those obtained using two-day data, we showed that it is necessary to analyze the data of calm seas and storm seas separately. The Helmholtz resonant period in Okkye Harbor was found to be about 9.6 minutes with its relative amplification ratio of 9 to 10, and local amplifications were apparent at the periods of 1.2 to 1.3 minutes and 0.7 minute. During calm seas, both at the harbor entrance and inside the harbor the energy of the waves of 9 minutes or longer period was larger than the infra-gravity wave energy by more than 100 times. However, during storm seas the energy level was very high all over the period band, and local amplification was larger than that during calm seas by more than 100 times, especially inside the harbor, Finally it was shown that the energies of the Helmholtz resonant mode and the infra-gravity waves of 1 to 2 minutes are proportional to the storm wave height.

  • PDF

Hydraulic Model Experiments and Performance Analysis of Existing Empirical Formulas for Overtopping Discharge on Tetrapod Armored Rubble Mound Structures with Low Relative Freeboard (상대여유고가 낮은 테트라포드 피복 경사제의 월파량에 대한 수리모형실험 및 기존 경험식의 예측성능 분석)

  • Sang-Woo Yoo;Jae-Young Kim;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.3
    • /
    • pp.105-115
    • /
    • 2024
  • In coastal structure design incorporating revetments, the assessment of wave overtopping discharge relies on hydraulic model experiments. Numerous empirical formulas have been developed to predict overtopping discharge based on quantitative data from these experiments. Typically, for revetment structures aimed at mitigating wave overtopping, crest height is determined by considering the maximum amplitude of the design wave, resulting in a relatively high freeboard compared to wave heights. However, achieving complete prevention of all wave overtopping would require the crown wall to have substantial crest heights, rendering it economically impractical. Therefore, the concept of limiting discharge has been introduced in the design of revetment structures, aiming to restrict wave overtopping discharge to an acceptable level. Consequently, many coastal structures in real-world settings feature relatively lower freeboard heights than incident wave heights. This study investigated wave overtopping discharge on rubble-mound breakwaters with relatively low freeboard heights through hydraulic model experiments. Furthermore, it conducted a comparative analysis of the predictive capabilities of existing empirical formulas for estimating overtopping discharge using experimental data.

Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model (Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측)

  • Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

Stability Formula for Rakuna-IV Armoring Rubble-Mound Breakwater (사석방파제 위에 피복한 Rakuna-IV의 안정공식)

  • Suh, Kyung-Duck;Lee, Tae Hoon;Matsushita, Hiroshi;Nam, Hong Ki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.181-190
    • /
    • 2013
  • In this study, a total of 51 cases of hydraulic model tests has been conducted for various wave conditions and slope angles of breakwater to develop a stability formula for Rakuna-IV armoring a rubble-mound breakwater. The stability number of the formula is expressed as a function of relative damage, number of waves, structural slope, and surf similarity parameter. The stability formula is derived separately for plunging and surging waves, the greater of which is used. The transitional surf similarity parameter from plunging waves to surging waves is also presented. Lastly, to explain the stability of Rakuna-IV to the engineers who are familiar with the stability coefficient in the Hudson formula, the required weight of Rakuna-IV is calculated for varying significant wave height for typical plunging and surging wave conditions, which is then compared with those of the Hudson formula using several different stability coefficients.