• Title/Summary/Keyword: Relative frequency density

Search Result 152, Processing Time 0.024 seconds

Status, Distribution and Diversity of Invasive Forest Undergrowth Species in the Tropics: a Study from Northeastern Bangladesh

  • Rahman, Md. Habibur;Khan, Mohammed Abu Sayed Arfin;Fardusi, Most. Jannatu;Roy, Bishwajit
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.149-159
    • /
    • 2010
  • This paper analyzes data on the composition, status, diversity, and distribution pattern of invasive forest undergrowth in a protected area (Khadimnagar National Park) of Northeastern Bangladesh. Assessment was done by means of stratified random sampling to diversify the invasive forest undergrowth species. For vegetation survey, 45 plots were taken randomly in ($2m{\times}2m$) circular plot from three topographical regions namely top of the hill, middle slope and plain land (15 plots from each region) and a total of 715 individuals, 22 invasive species belonging to 17 families were recorded from the study site. Among invasive species, shrubs constitute 10 species, herbs 9 species, and vines 3 species respectively. Mass number of invasive undergrowth species was grows in plain land (45.45%) followed by middle slope (31.82%). Based on the survey, invasive undergrowth plants of study areas were also categorized into three degrees of invasiveness e.g., highly invasive, moderately invasive and potentially invasive. Herbs, shrubs, and vines constitute the highest density at Chromolaema odorata (Linn.) King. (1.09), relative density at Chromolaema odorata (Linn.) King. 6.85%; highest and lowest frequency was calculated at Cassia alata L. (64.44%) and Diplazium esculentum (24.44%); for relative frequency the highest was Cassia alata L., which occupies 6.64%. Determination of the abundance of the different species revealed that Cassia alata L., constitutes (3.36) followed by Pteris cretica Wilsonii (3.14) of the area. The presence of invasive undergrowth species always reduced the number of associated species. Therefore, an extensive in-depth long-term investigation, proper policy formulation and management interventions and further study and continuous monitoring on their impacts need to be triggered targeting the control of the invasive undergrowth species of this protected area. In this aspect, national and international organization could help to conserve its biodiversity.

Effect of Current Density on Ion Conductivity of Membrane in Proton Exchange Membrane (고분자전해질 연료전지에서 고분자막의 이온전도도에 미치는 전류밀도의 영향)

  • Hwang, Byungchan;Oh, Sohyung;Lee, Daewoong;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Na, Il-Chae;Lee, Jung-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this work, we study the ion conductivity by analyzing the impedance to the high current density range that the PEMFC (Proton Exchange Membrane Fuel Cell) is actually operated. The effect of GDL (Gas Diffusion Layer)presence on impedance was investigated indirectly by measuring hydrogen permeability. When the RH (Relative Humidity)was higher than 60% in the low current range (< $80mA/cm^2$), the moisture content of the polymer membrane was sufficient and the ion conductivity of the membrane was not influenced by the current change. However, when RH was low, ion conductivity increased due to water production as current density increased. The ion conductivity of the membrane obtained by HFR (High Frequency Resistance) in the high current region ($100{\sim}800mA/cm^2$)was compared with the measured value and simulated value. At RH 100%, both experimental and simulated values showed constant ion conductivity without being influenced by current change. At 30~70% of RH, the ionic conductivity increased with increasing current density and tended to be constant.

Gravitational Instability of Rotating Isothermal Rings

  • Moon, Sanghyuk;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.61.2-61.2
    • /
    • 2016
  • Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent eld method, we first construct their equilibrium sequences specified by two parameters: ${\alpha}$ corresponding to the thermal energy relative to gravitational potential energy, and $R_B$ measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller ${\alpha}$, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency ${\Omega}$ and central density ${\rho}_c$. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when ${\Omega}$ exceeds the critical value. The critical angular frequency is found to be almost constant at $0.7(G{\rho}_c)^{1/2}$ for ${\alpha}$ > 0.01 and increases rapidly for smaller ${\alpha}$. We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  • PDF

Impact Shock Components and Attenuation in Flat Foot Running (편평족 달리기 시 충격 쇼크의 성분과 흡수)

  • Ryu, Ji-Seon;Lim, Ga-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • Objective : The purpose of this study was to determine the differences in the head and tibial acceleration signal magnitudes, and their powers and shock attenuations between flat-footed and normal-footed running. Methods : Ten flat-footed and ten normal-footed subjects ran barefoot on a treadmill with a force plate at 3.22m/s averaged from their preferred running speed using heel-toe running pattern while the head and tibial acceleration in the vertical axis data was collected. The accelerometers were sampled at 2000 Hz and voltage was set at 100 mv, respectively. The peak magnitudes of the head and tibial acceleration signals in time domain were calculated. The power spectral density(PSD) of each signal in the frequency domain was also calculated. In addition to that, shock attenuation was calculated by a transfer function of the head PSD relative to the tibia PSD. A one-way analysis of variance was used to determine the difference in time and frequency domain acceleration variables between the flat-footed and normal-footed groups running. Results : Peaks of the head and tibial acceleration signals were significantly greater during flat-footed group running than normal-footed group running(p<.05). PSDs of the tibial acceleration signal in the lower and higher frequency range were significantly greater during flat-footed running(p<.05), but PSDs of the head acceleration signal were not statistically different between the two groups. Flat-footed group running resulted in significantly greater shock attenuation for the higher frequency ranges compared with normal-footed group running(p<.05). Conclusion : The difference in impact shock magnitude and frequency content between flat-footed and normal-footed group during running suggested that the body had different ability to control impact shock from acceleration. It might be conjectured that flat-footed running was more vulnerable to potential injury than normal-footed running from an impact shock point of view.

Joint Characteristics in Layered Rocks (층상 암석에서 절리의 특성 연구)

  • Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • Joints are planar tensile opening-mode fractures whose relative motion, as the fracture propagates, is perpendicular to bedding plane and occur in a systematic manner to form a joint set. This paper discusses the mechanical control of joint propagation, the relationship between join spacing and layer thickness, the join saturation, the frequency distribution of join spacing, the joint density, the cross joint, and the development mechanism of joint from a lot of recent joint studies in sedimentary rocks.

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

Simplified Maximum Likelihood Estimation of the Frequencies of Multiple Sinusoids (간략화된 최우도 방법을 사용한 다중 정현파의 주파수 추정)

  • Ahn, Tae-Chon;Oh, Sung-Kwun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.20-31
    • /
    • 1994
  • The maximum likelihood(ML) estimation has excellent accuracy for frequency estimation of multiple sinusoids, but the maximum likelihood function requires much loss owing to the high nonlinearity. This paper presents a simplified maximum likelihood estimation, in order to improve the nonlinearity of the maximum likelihood estimation for frequencies of sinusoids in signals. This method is applied to the frequency estimation of sinusoidal signals corrupted by white or colored measurement noise. Monte-carlo simulations are conducted for the comparison of ML method with the best MFBLP method, in terms of sampled mean, root mean square and relative bias. The power spectral density and the position of frequency in unit circle are appeared in figures.

  • PDF

Fabrication and Mechanical Properties of Dense WSi2-20vol.%SiC Composite by High-Frequency Induction-Heated Combustion Synthesis (고주파유도가열 연소합성에 의한 치밀한 WSi2-20vol.%SiC 복합재료 제조 및 기계적 특성)

  • Oh, Dong-Young;Kim, Hwan-Cheol;Lee, Sang-Kwon;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Dense $WSi_2$-20vol.%SiC composite was synthesized by high-frequency induction-heated combustion synthesis(HFIHCS) method within 2 minutes in one step from elemental powder mixture of W, Si and C. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. Highly dense $WSi_2$-20vol.%SiC with relative density of up to 97% was produced under simultaneous application of 60MPa pressure and the induced current. The average grain size of $WSi_2$ was about $5.2{\mu}m$. The hardness and fracture toughness values obtained were 1700kg/$mm^2$ and $4.4MPa{\cdot}m^{1/2}$, respectively.

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.