• Title/Summary/Keyword: Relative bias

Search Result 270, Processing Time 0.021 seconds

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS (독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발)

  • Dr. Tae-Jun Ha
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

Preparation of $SrTiO_3$ Thin Film by RF Magnetron Sputtering and Its Dielectric Properties (RF 마그네트론 스퍼터링법에 의한 $SrTiO_3$박막제조와 유전특성)

  • Kim, Byeong-Gu;Son, Bong-Gyun;Choe, Seung-Cheol
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.754-762
    • /
    • 1995
  • Strontium titanate(SrTiO$_3$) thin film was prepared on Si substrates by RF magnetron sputtering for a high capacitance density required for the next generation of LSTs. The optimum deposition conditions for SrTiO$_3$thin film were investigated by controlling the deposition parameters. The crystallinity of films and the interface reactions between SrTO$_3$film and Si substrate were characterized by XRD and AES respectively. High quality films were obtained by using the mixed gas of Ar and $O_2$for sputtering. The films were deposited at various bias voltages to obtain the optimum conditions for a high quality file. The best crystallinity was obtained at film thickness of 300nm with the sputtering gas of Ar+20% $O_2$and the bias voltage of 100V. The barrier layer of Pt(100nm)/Ti(50nm) was very effective in avoiding the formation of SiO$_2$layer at the interface between SrTiO$_3$film and Si substrate. The capacitor with Au/SrTiO$_3$/Pt/Ti/SiO$_2$/Si structure was prepared to measure the electric and the dielectric properties. The highest capacitance and the lowest leakage current density were obtained by annealing at $600^{\circ}C$ for 2hrs. The typical specific capacitance was 6.4fF/$\textrm{cm}^2$, the relative dielectric constant was 217, and the leakage current density was about 2.0$\times$10$^{-8}$ A/$\textrm{cm}^2$ at the SrTiO$_3$film with the thickness of 300nm.

  • PDF

A stratified random sampling design for paddy fields: Optimized stratification and sample allocation for effective spatial modeling and mapping of the impact of climate changes on agricultural system in Korea (농지 공간격자 자료의 층화랜덤샘플링: 농업시스템 기후변화 영향 공간모델링을 위한 국내 농지 최적 층화 및 샘플 수 최적화 연구)

  • Minyoung Lee;Yongeun Kim;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.526-535
    • /
    • 2021
  • Spatial sampling design plays an important role in GIS-based modeling studies because it increases modeling efficiency while reducing the cost of sampling. In the field of agricultural systems, research demand for high-resolution spatial databased modeling to predict and evaluate climate change impacts is growing rapidly. Accordingly, the need and importance of spatial sampling design are increasing. The purpose of this study was to design spatial sampling of paddy fields (11,386 grids with 1 km spatial resolution) in Korea for use in agricultural spatial modeling. A stratified random sampling design was developed and applied in 2030s, 2050s, and 2080s under two RCP scenarios of 4.5 and 8.5. Twenty-five weather and four soil characteristics were used as stratification variables. Stratification and sample allocation were optimized to ensure minimum sample size under given precision constraints for 16 target variables such as crop yield, greenhouse gas emission, and pest distribution. Precision and accuracy of the sampling were evaluated through sampling simulations based on coefficient of variation (CV) and relative bias, respectively. As a result, the paddy field could be optimized in the range of 5 to 21 strata and 46 to 69 samples. Evaluation results showed that target variables were within precision constraints (CV<0.05 except for crop yield) with low bias values (below 3%). These results can contribute to reducing sampling cost and computation time while having high predictive power. It is expected to be widely used as a representative sample grid in various agriculture spatial modeling studies.

Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

  • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.493-505
    • /
    • 2020
  • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

Short-term Effect of Fine Particulate Matter on Children's Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis

  • Lim, Hyungryul;Kwon, Ho-Jang;Lim, Ji-Ae;Choi, Jong Hyuk;Ha, Mina;Hwang, Seung-sik;Choi, Won-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.49 no.4
    • /
    • pp.205-219
    • /
    • 2016
  • Objectives: No children-specified review and meta-analysis paper about the short-term effect of fine particulate matter ($PM_{2.5}$) on hospital admissions and emergency department visits for asthma has been published. We calculated more precise pooled effect estimates on this topic and evaluated the variation in effect size according to the differences in study characteristics not considered in previous studies. Methods: Two authors each independently searched PubMed and EMBASE for relevant studies in March, 2016. We conducted random effect meta-analyses and mixed-effect meta-regression analyses using retrieved summary effect estimates and 95% confidence intervals (CIs) and some characteristics of selected studies. The Egger's test and funnel plot were used to check publication bias. All analyses were done using R version 3.1.3. Results: We ultimately retrieved 26 time-series and case-crossover design studies about the short-term effect of $PM_{2.5}$ on children's hospital admissions and emergency department visits for asthma. In the primary meta-analysis, children's hospital admissions and emergency department visits for asthma were positively associated with a short-term $10{\mu}g/m^3$ increase in $PM_{2.5}$ (relative risk, 1.048; 95% CI, 1.028 to 1.067; $I^2=95.7%$). We also found different effect coefficients by region; the value in Asia was estimated to be lower than in North America or Europe. Conclusions: We strengthened the evidence on the short-term effect of $PM_{2.5}$ on children's hospital admissions and emergency department visits for asthma. Further studies from other regions outside North America and Europe regions are needed for more generalizable evidence.

A Preliminary Quantification of $^{99m}Tc$-HMPAO Brain SPECT Images for Assessment of Volumetric Regional Cerebral Blood Flow ($^{99m}Tc$-HMPAO 뇌혈류 SPECT 영상의 부위별 체적 혈류 평가에 관한 기초 연구)

  • Kwark, Cheol-Eun;Park, Seok-Gun;Yang, Hyung-In;Choi, Chang-Woon;Lee, Kyung-Han;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.170-174
    • /
    • 1993
  • The quantitative methods for the assessment of the cerebral blood flow using $^{99m}Tc$-HMPAO brain SPECT utilize the measured count distribution in some specific reconstructed tomographic slice or in algebraic summation of a few neighboring slices, rather than the true volumetric distribution, to estimate the relative regional cerebral blood flow, and consequently produce the biased estimates of the true regional cerebral blood flow. This kind of biases are thought to originate mainly from the arbitrarily irregular shape of the cerebral region of interest(ROI) which are analyzed. In this study, a semi-automated method for the direct quantification of the volumetric regional cerebral blood flow estimate is proposed, and the results are compared to those calculated by the previous planar approaches. Bias factors due to the partial volume effect and the uncertainty in ROI determination are not considered presently for the methodological comparison of planar/volumetric assessment protocol.

  • PDF

Study of the determination of 226Ra in soil using liquid scintillation counter (액체섬광계수기를 이용한 토양 중 226Ra 분석 방법 연구)

  • Jung, Yoonhee;Kim, Hyuncheol;Chung, Kun Ho;Kang, Mun Ja
    • Analytical Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.65-72
    • /
    • 2016
  • This study presented an analytical method for detecting radium in soils using a liquid scintillation counter (LSC). The isotope 226Ra was extracted from soil using the fusion method and then separated from interfering radionuclides using the precipitation method. Radium was coprecipitated as sulfate salts with barium (Ba) and then converted into Ba(Ra)CO3, which is soluble in an acidic solution. The isotope 222Rn, the decay progeny of 226Ra, was trapped in a water immiscible cocktail and analyzed by LSC. The pulse shape analysis (PSA) level was estimated using 90Sr and 226Ra standard solutions. The figure of merit was the highest at PSA 80, while the alpha spillover was the lowest at PSA 80. The counting efficiency was 243 ± 2% in a glass vial. This analytical method was verified with International Atomic Energy Agency (IAEA) reference materials, including IAEA-312, IAEA-314, and IAEA-315. The recovery ranged from 60–82%, while the relative bias between the measured value and the recommended value was less than 10%. The minimum detectable activity was 2.1 Bq kg−1 with dry mass 1 g, the background count rate of 0.02 cpm, the recovery rate of 70% and counting time of 30 min.

Development and Validation of a Predictive Model for Listeria monocytogenes Scott A as a Function of Temperature, pH, and Commercial Mixture of Potassium Lactate and Sodium Diacetate

  • Abou-Zeid, Khaled A.;Oscar, Thomas P.;Schwarz, Jurgen G.;Hashem, Fawzy M.;Whiting, Richard C.;Yoon, Kisun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.718-726
    • /
    • 2009
  • The objective of this study was to develop and validate secondary models that can predict growth parameters of L. monocytogenes Scott A as a function of concentrations (0-3%) of a commercial potassium lactate (PL) and sodium diacetate (SDA) mixture, pH (5.5-7.0), and temperature (4-37DC). A total of 120 growth curves were fitted to the Baranyi primary model that directly estimates lag time (LT) and specific growth rate (SGR). The effects of the variables on L. monocytogenes Scott A growth kinetics were modeled by response surface analysis using quadratic and cubic polynomial models of the natural logarithm transformation of both LT and SGR. Model performance was evaluated with dependent data and independent data using the prediction bias ($B_f$) and accuracy factors ($A_f$) as well as the acceptable prediction zone method [percentage of relative errors (%RE)]. Comparison of predicted versus observed values of SGR indicated that the cubic model fits better than the quadratic model, particularly at 4 and $10^{\circ}C$. The $B_f$and $A_f$for independent SGR were 1.00 and 1.08 for the cubic model and 1.08 and 1.16 for the quadratic model, respectively. For cubic and quadratic models, the %REs for the independent SGR data were 92.6 and 85.7, respectively. Both quadratic and cubic polynomial models for SGR and LT provided acceptable predictions of L. monocytogenes Scott A growth in the matrix of conditions described in the present study. Model performance can be more accurately evaluated with $B_f$and $A_f$and % RE together.

The Characteristic Analysis of Precipitable Water Vapor According to GPS Observation Baseline Determination (GPS 관측소 기선 처리에 따른 가강수량 특성 분석)

  • Lim, Yun-Kyu;Han, Sang-Ok;Jung, Sueng-Pil;Seong, Ji-Hye
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.626-632
    • /
    • 2013
  • In this study the GPS Precipitable Water Vapor (PWV) was derived and evaluated by a radiosode measure during the winter intensive observation in Gangneung site from January 5 till February 29 in 2012. Bernise 5.0 software was used to derive the GPS data. GPS-derived PWV from Zero difference (GANG) and Single difference (GANG and DAEJ) was high variance in time and about 5 times the PWV of radiosonde. GPS post-processing has been performed from two additional IGS site (Xian Dao, Ibaraki-ken) in order to correct the absolute troposphere errors. As a result, the mean bias error (MBE) and root mean square error (RMSE) and correlation compared with radiosonde measure were 0.67 mm, 6.40 mm, and 0.93, respectively. In order to correct the relative troposphere errors from the altitudinal difference between the two GPS receivers, we calculated the GPS-derived PWV by adding the data of GPS that was installed in Gangneung-Wonju University near the Gangwon Regional Meteorological Administration. In the end, the improved result showed that MBE, RMSE and correlation in comparison with radiosonde measures were 0.61 mm, 5.79 mm, and 0.93, respectively.