• Title/Summary/Keyword: Relative TEM

Search Result 80, Processing Time 0.022 seconds

Synthesis of Well-Distributed SnO2-Sn-Ag3Sn Nanoparticles in Carbon Nanofibers Using Co-Electrospinning (이중 전기방사법을 이용하여 SnO2-Sn-Ag3Sn 나노 입자가 균일하게 내재된 탄소 나노섬유의 합성)

  • An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.143-148
    • /
    • 2013
  • Well-distributed $SnO_2$-Sn-$Ag_3Sn$ nanoparticles embedded in carbon nanofibers were fabricated using a co-electrospinning method, which is set up with two coaxial capillaries. Their formation mechanisms were successfully demonstrated. The structural, morphological, and chemical compositional properties were investigated by field-emission scanning electron spectroscopy (FESEM), bright-field transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, to obtain well-distributed $SnO_2$ and Sn and $Ag_3Sn$ nanoparticles in carbon nanofibers, the relative molar ratios of the Ag precursor to the Sn precursor including 7 wt% polyacrylonitrile (PAN) were controlled at 0.1, 0.2, and 0.3. The FESEM, bright-field TEM, XRD, and XPS results show that the nanoparticles consisting of $SnO_2$-Sn-$Ag_3Sn$ phases were in the range of ~4 nm-6 nm for sample A, ~5 nm-15 nm for sample B, ~9 nm-22 nm for sample C. In particular, for sample A, the nanoparticles were uniformly grown in the carbon nanofibers. Furthermore, when the amount of the Ag precursor and the Sn precursor was increased, the inorganic nanofibers consisting of the $SnO_2$-Sn-$Ag_3Sn$ nanoparticles were formed due to the decreased amount of the carbon nanofibers. Thus, well-distributed nanoparticles embedded in the carbon nanofibers were successfully synthesized at the optimum molar ratio (0.1) of the Ag precursor to the Sn precursor after calcination of $800^{\circ}C$.

Performance Degradation of Dead-end Type PEMFC by Startup and Shutdown Cycles (시동/정지 반복에 의한 데드엔드형 고분자전해질 연료전지의 성능 감소)

  • Jeong, Jaehyeun;Jeong, Jaejin;Song, Myunghyun;Chung, Hoibum;Na, Ilchai;Lee, Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.540-544
    • /
    • 2013
  • During start up and shut down of a proton exchange membrane fuel cells (PEMFC), the performance and lifetime of PEMFC were reduced. In this study, effect of startup and shutdown were investigated in dead-end type PEMFC using oxygen as a cathode gas with polarization curve, impedance spectroscopy (EIS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dummy load which eliminates residual hydrogen and oxygen during startup and shutdown operation should be applied to mitigated the degradation of PEMFC performance. At 50% relative humidity (RH) under the repetitive on/off cycling, the cell performance decayed faster than at 100% RH because of corrosion of the cathode carbon support. Water suppling into cell reduced the degradation rate of dead-end type PEMFC during start up and shut down cycling at 50% RH.

Nb-carbonitride Analysis Techniques in Nb-steels (강 중 Nb계 탄질화 석출물 정량분석 기술)

  • Lee, J.J.;Jung, S.W.;Yoo, K.S.
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.493-504
    • /
    • 1994
  • The morphology and structure of precipitates of formed in Nb steels were investigated using SEM, TEM and XRD. The quantitative analysis of the precipitates was performed by ICP-AES. The potentiostatic etching method was employed as an extraction method using 10% AA-methanol and 15% Na-citrate electrolytes. The two selected potentials relative to SCE(Standard Calomel Electrode), -100mV in 10% AA-methanol solution and -250mV in 15% Na-citrate solution were found to be effective for the extraction. XRD analysis showed that composition of Nb carbonitride in Nb-steel(0.01% C-0.7% Nb-0.004N) was $NbC_{0.65}N_{0.2}$.

  • PDF

Synthesis and Properties of Exfoliated Poly(methyl methacrylate-co-acrylonitrile)/Clay Nanocomposites via Emulsion Polymerization

  • Mingzhe Xu;Park, Yeong-Suk;Wang, Ki-Hyun;Kim, Jong-Hyun;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.410-417
    • /
    • 2003
  • Poly(methyl methacrylate-co-acrylonitrile) [P(MMA-co-AN)]/Na-MMT nanocomposites were synthesized through emulsion polymerization with pristine Na-MMT. The nanocomposites were exfoliated up to 20 wt% content of pristine Na-MMT relative to the amount of MMA and AN, and exhibited enhanced storage moduli, E', relative to the neat copolymer. The exfoliated morphology of the nanocomposite was confirmed by XRD and TEM. 2-Acryla-mido-2-methyl-1-propane sulfonic acid (AMPS) widened the galleries between the clay layers before polymerization and facilitated the comonomers, penetration into the clay to create the exfoliated nanocomposites. The onset of the thermal decomposition of the nanocomposites shifted to a higher temperature as the clay content increased. By calculating areas of tan$\delta$ of the nanocomposites, we observed that the nanocomposites show more solid-like behavior as the clay content increases. The dynamic storage modulus and complex viscosity increased with clay content. The complex viscosity showed shear-thinning behavior as the clay content increased. The Young's moduli of the nano-composites are higher than that of the neat copolymer and they increase steadily as the silicate content increases, as a result of the exfoliated structure at high clay content.

Comprehensive Structural Characterization of Commercial Blue Light Emitting Diode by Using High-Angle Annular Dark Filed Scanning Transmission Electron Microscopy and Transmission Electron Microscopy (고각 환형 암시야 주사투과전자현미경기법과 투과전자현미경기법을 이용한 상용 청색 발광다이오드의 종합적인 구조분석)

  • Kim, Dong-Yeob;Hong, Soon-Ku;Chung, Tae-Hoon;Lee, Sang Hern;Baek, Jong Hyeob
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This study suggested comprehensive structural characterization methods for the commercial blue light emitting diodes(LEDs). By using the Z-contrast intensity profile of Cs-corrected high-angle annular dark field scanning transmission electron microscope(HAADF-STEM) images from a commercial lateral GaN-based blue light emitting diode, we obtained important structural information on the epilayer structure of the LED, which would have been difficult to obtain by conventional analysis. This method was simple but very powerful to obtain structural and chemical information on epi-structures in a nanometer-scale resolution. One of the examples was that we could determine whether the barrier in the multi-quantum well(MQW) was GaN or InGaN. Plan-view TEM observations were performed from the commercial blue LED to characterize the threading dislocations(TDs) and the related V-pit defects. Each TD observed in the region with the total LED epilayer structure including the MQW showed V-pit defects for almost of TDs independent of the TD types: edge-, screw-, mixed TDs. The total TD density from the region with the total LED epilayer structure including the MQW was about $3.6{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion as 80%: 7%: 13%. However, in the mesa-etched region without the MQW total TD density was about $2.5{\times}10^8cm^{-2}$ with a relative ratio of Edge- : Screw- :Mixed-TD portion of 86%: 5%: 9 %. The higher TD density in the total LED epilayer structure implied new generation of TDs mostly from the MQW region.

Relative Photonic Properties of Fe/TiO2-Nanocarbon Catalysts for Degradation of MB Solution under Visible Light

  • Oh, Won-Chun;Zhang, Feng-Jun;Meng, Ze-Da;Zhang, Kan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1128-1134
    • /
    • 2010
  • Nanocarbon supported Fe/$TiO_2$ composite catalysts were prepared using CNTs (carbon nanotubes) and $C_{60}$ (fullerene) as nanocarbon sources by a modified sol-gel method. The Fe/$TiO_2$-nanocarbon composites were characterized by the BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and UV-vis spectra. In comparison with non-nanocarbon doped Fe/$TiO_2$ composites, the nanocarbon supported Fe/$TiO_2$ composites had higher absorption ability with a larger specific surface area, and showed higher photocatalytic activity during the degradation of methylene blue (MB) under visible light. The reasons for the obvious increase of photocatalytic activity indicated that the photoactivity not only benefits from nanocarbon introduced, but also relates to the cooperative effect of the Fe as a dopant.

Cutting Technique for Biodegradable Rope using a CW CO2 Laser with TEM00 mode

  • Lee, Dong-Gil;Kim, Seong-Hun;Park, Seong-Wook;Yang, Yong-Su;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.576-581
    • /
    • 2012
  • A 23 W continuous wavelength $CO_2$ laser system exited by a high-frequency LCC resonant converter is adapted to cut a biodegradable rope fabricated with polybutylene succinate. As the biodegradable rope consists of three twisted strands, the thickness changes relative to the position of the laser beam and we thus propose a method to determine exact cutting depth. In order to obtain the parameters related to the rope cutting, the experimental and theoretical cutting depths are compared and analyzed for a range of laser heat sources. The melted thickness and groove width of the cut biodegradable rope are also examined. The proposed theoretical cutting depth depends on the incident power and target velocity ratio. From these experimental results, the biodegradable rope with a diameter of 22 mm can be cut with a heat source of 50 J/cm resulting in a melted thickness of 1.96 mm and a groove width of 0.65 mm. The laser system is shown to be perfect tool for the processing of biodegradable rope without the occurrence of raveling.

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young;Hwang, Cheong-Soo;Byun, Jong-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.657-662
    • /
    • 2012
  • Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

Recycling Method of Used Indium Tin Oxide Targets (폐 인듐주석산화물 타겟의 재활용 기술)

  • Lee, Young-In;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at $1000^{\circ}C$ for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at $1500^{\circ}C$ for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF