• Title/Summary/Keyword: Relative Stability

Search Result 922, Processing Time 0.031 seconds

Seismic Behaviour of Eco-BELT System and Seismic Effectiveness of T-shaped Deadman Considering Soil-Structure Interface Based on Dynamic Numerical Analysis (흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.37-49
    • /
    • 2021
  • A retaining wall system is widely constructed civil structure to maximize the effectiveness of practical use of the land. Recently, the technology which is more eco-friendly and owns seismic stability of the retaining wall system becomes important. In this study, an Eco-BELT system using natural rocks as the front wall is introduced and the seismic characteristics of the Eco-BELT system are analyzed based on 2 and 3 dimensional numerical analysis. The soil-structure interface comprises between backfill soil and natural rocks are considered. The relative density is mainly considered to influence the seismic behavior of Eco-BELT system, and T-shaped deadman is also considered to judge the increase of seismic stability. As a result, lateral displacement of the wall decreases 29.5% in maximum under 90% of relative density and decreases 21.2 to 21.9% with T-shaped deadman, therefore, the seismic effectiveness of T-shaped deadman and increasing relative density of backfill are verified by numerical analysis.

Vision-based Guidance for Loitering over a Target

  • Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.366-377
    • /
    • 2016
  • This paper presents a vision-based guidance method that allows a fixed-wing aircraft to orbit around a target at a given radius. The guidance method uses a simple formula that regulates a relative side-bearing angle estimated by a vision system. The global asymptotic stability of the associated guidance law is demonstrated, and a linear analysis is performed to facilitate the proper selection of the relevant control parameters. A flight experiment is presented to demonstrate the feasibility and performance of the proposed guidance method.

Experiment on Conservation Treatment Method(PEG, Sucrose and Lactitol) and Degree of State-change with RH of Waterlogged Archaeological Wood (수침고목재(水浸古木材)의 보존(保存)을 위한 PEG, Sucrose, Lactitol 처리(處理) 및 습도조건(濕度條件)에 따른 상태변화(狀態變化) 실험(實驗))

  • Yi, Yong-hee;Kim, Soo-choul;Park, Young-man;Kim, Kyoung-su
    • Conservation Science in Museum
    • /
    • v.2
    • /
    • pp.19-25
    • /
    • 2000
  • In order to studies proper conservation treatment condition of waterlogged archaeological wood excavated from wetland in Shinchang-dong, Kwangju, 2 kinds of wooden objects were treated with PEG(Poly-Ethylene Glycol), sucrose and lactitol and their size stability and relative humidity were analyzed and compared each other. The result showed that Quercus spp. had the highest size stability in 2 Step-PEG treatment using PEG#200(MW:200) and PEG#4000 (MW:3,350) and Acer spp. was the highest in treatment using only PEG#4000. In relative humidity test after treatment 2 Step-PEG treatment showed the lowest size stability. In the meantime, sucrose and lactitol-treated sample was fast for penetration, sucrose-treated sample showed a sharp increase for penetration in as high as 84% humidity condition and medicine flew out a lot and lactitol-treated sample got enlarged with fine cracking(splitting) in relative humidity test. In relative humidity test, the samples showed cracking(splitting) in all treatment materials except for 2 Step-PEG treatment. This study showed that waterlogged archaeological wood excavated from Shinchang-dong had the highest size stability and highest adaptation to humidity change in case of treatment with 2 Step-PEG.

Proportional Navigation-Based Optimal Collision Avoidance for UAVs (비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동)

  • 한수철;방효충
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.

Effect of excitation intensity on slope stability assessed by a simplified approach

  • Korzec, Aleksandra;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.601-612
    • /
    • 2021
  • The paper concerns the selection of a design accelerograms used for the slope stability assessment under earthquake excitation. The aim is to experimentally verify the Arias Intensity as an indicator of the excitation threat to the slope stability. A simple dynamic system consisting of a rigid block on a rigid inclined plane subjected to horizontal excitation is adopted as a slope model. Strong ground motions recorded during earthquakes are reproduced on a shaking table. The permanent displacement of the block serves as a slope stability indicator. Original research stand allows us to analyse not only the relative displacement but also the acceleration time history of the block. The experiments demonstrate that the Arias Intensity of the accelerogram is a good indicator of excitation threat to the stability of the slope. The numerical analyses conducted using the experimentally verified extended Newmark's method indicate that both the Arias Intensity and the peak velocity of the excitation are good indicators of the impact of dynamic excitation on the dam's stability. The selection can be refined using complementary information, which is the dominant frequency and duration of the strong motion phase of the excitation, respectively.

Thermal stability of superconducting systems conduction-cooled by cryocooler (극저온냉동기로 전도냉각되는 초전도시스템의 열적 안정성)

  • 권기범;장호명
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.56-63
    • /
    • 2001
  • The thermal stability conditions are investigated for superconducting magnet systems cooled conductively by cryocooler without liquid cryogens. The worst scenario in the systems is that the heat generation in the resistive state exceeds the refrigeration. causing a rise in the temperature of the magnet winding and leading to the burnout. It is shown by an analytical solution that in the continuous resistive state, the temperature may increase indefinitely or a stable steady-state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent Properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is Presented and discussed to demonstrate the physical importance of the results.

  • PDF

Optimum Yaw Moment Distribution with Electronic Stability Control and Active Rear Steering (자세 제어 장치와 능동 후륜 조향을 이용한 최적 요 모멘트 분배)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1246-1251
    • /
    • 2014
  • This article presents an optimum yaw moment distribution scheme for a vehicle with electronic stability control (ESC) and active rear steering (ARS). After computing the control yaw moment in the yaw moment controller, it should be distributed into tire forces, generated by ESC and ARS. In this paper, yaw moment distribution is formulated as an optimization problem. New objective function is proposed to tune the relative magnitudes of the tire forces. Weighed pseudo-inverse control allocation (WPCA) is adopted to solve the problem. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From the simulation, the proposed optimum yaw moment distribution scheme is shown to effective for vehicle stability control.

A Relative Study on Safe Factor by Different Analyses of Slope Stability (해석방법에 따른 사면 안전율 비교 연구)

  • An, Joon-Hee;Park, Choon-Sik;Jang, Jeong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.720-723
    • /
    • 2006
  • This study performed slope stability analysis by changing analysis methods and shear strength with the slope stability analysis program. The conclusions of the study are as follows. 1) The safe factor of clayey soil applied with Bishop's simple method turned out to be similar to or slightly higher than those of other methods, for both dry and saturated conditions. 2) The safe factor of sandy soil applied with GLE method turned out to be slightly higher than those of other methods. But when applied with Bishop's simple method, it appeared to be slightly higher than those of other methods. 3) The safe factor of ordinary soil applied with GLE method showed the highest result. 4) Janbu method showed the lowest safe factor among all the methods for the above three types of soils.

  • PDF

STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYER IN CURVILINEAR COORDINATE SYSTEM USING NONLINEAR PSE (비선형 PSE를 이용한 압축성 경계층의 안정성 해석)

  • Gao, B.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.134-140
    • /
    • 2007
  • Nonlinear parabolized stability equations for compressible flow in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Blasius flow is tested. The results of the present computation show good agreement with DNS data. Nonlinear interaction can make the T-S fundamental wave more unstable and the onset of its amplitude decay is shifted downstream relative to linear case. For nonlinear calculations, rather small difference in initial amplitude can produce large change during nonlinear region. Compressible secondary instability at Mach number 1.6 is also simulated and showed that 1.1% initial amplitude for primary mode is enough to trigger the secondary growth.

  • PDF

Formation Geometry Center based Formation Controller Design using Lyapunov Stability Theorem

  • Lee, Ji-Eun;Kim, Hyeong-Seok;Kim, You-Dan;Han, KiHoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2008
  • New formation flight controller for unmanned aerial vehicles is proposed. A behavioral decentralized control approach called formation geometry center control is adopted. Trajectory tracking as well as formation geometry keeping are the purpose of the formation flight, and therefore two controllers are designed: a trajectory tracking controller for reference trajectory tracking, and a position controller for formation geometry keeping. Each controller is designed using Lyapunov stability theorem to guarantee the asymptotic stability. Formation flight controller is finally obtained by combining the trajectory tracking controller and the formation geometry keeping controller using a weighting parameter that depends on the relative distance error between unmanned aerial vehicles. Numerical simulations are performed to validate the performance of the proposed controller.