• Title/Summary/Keyword: Relative Stability

Search Result 922, Processing Time 0.025 seconds

Voltage Stability Analysis Using Optimal Load Flow Method (최적화 조류계산법을 이용한 전압안정도 해석)

  • Jeon, Dong-Hoon;Choo, Jin-Boo;Kim, Kern-Joong;Lee, Byoung-Ill
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.7
    • /
    • pp.340-347
    • /
    • 2001
  • In this Paper, we proposed a new voltage stability analysis algorithm. Using $ $ calculated by the optimal load How method(OLF), it rapidly and correctly calculates a PV curve with voltage collapse point in the stable region. OLF can calculates voltage collapse point as well as the operating point in the stable region. Specially, $ $ indicates the relative distance between voltage collapse point and the solution in the unstable region. In the study of a sample system, we verified the superiority of proposed algorithm.

  • PDF

An Experimental Study on Improvement of the Stability of Plane Journal Bearing using Leaf Spring Damper (겹판스프링댐퍼를 이용한 저어널베어링의 안정성 향상에 관한 실험적연구)

  • 최영준;김종수;제양규
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • The purpose of present paper is to prove an improvement on stability of plane journal bearing due to the leaf spring damper (LSD) experimentally. A flexible rotor system is designed and manufactured, in order to generate oil whip instability of journal bearing at relative lower rotating speed. Vibration amplitude and instability onset speeds are investigated for a conventional plane journal bearing and plane journal bearing with LSD. To investigate the damping effects of LSD on stability of bearing, experiments are also conducted on the leaf spring dampers with and without working oil. It is found that the leaf spring damper can considerably increase the instability onset speed of a plane Journal bearing.

A Study on the Lond Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing (공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구)

  • 조성욱;임윤철
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.28-32
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under all bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number>0.01, we can not ignore the effect of slip for Journal bearing.

Experimental study of combustion stability assesment of injector (액체로켓엔진 안정성 예측을 위한 시험적 기법 연구)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Moon, Il-Yoon;Han, Yeoung-Min;Seol, Woo-Seok;Lee, Soo-Yong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.145-152
    • /
    • 2003
  • The objective of the present study is to develop methodology for the assesment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a full-scale injector has been employed in the study, which burns gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a full-scale thrust chamber. Single & multi split triplet injectors have been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

The Roles of Aramid Pulp and Potassium Titanate Whisker in the Automotive Friction Materials (자동차용 마찰재에 사용되는 아라미드 섬유와 티탄산칼륨 섬유의 역할)

  • Kim, Seong-Jin;Lim, Hyun-Woo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.213-218
    • /
    • 1999
  • Friction and wear characteristics of novolac resin-based friction materials reinforced with aramid pulp and potassium titanate were investigated by using a pad-on-disk type friction tester. Friction properties such as friction stability, surface morphology, and wear rate varied according to the relative amount of aramid pulp and potassium titanate. The friction materials reinforced with both aramid pulp and potassium titanate showed superior friction stability and wear resistance due to the formation of durable transfer layer.

  • PDF

Functional Properties of Modified Soybean Protein Isolate by Dimethylglutarylation (Dimethylglutarylation에 의한 변형대두단백질의 기능적 특성)

  • Choi, One-Kyun;Jung, Chul-Won
    • Journal of the Korean Society of Food Culture
    • /
    • v.14 no.5
    • /
    • pp.477-485
    • /
    • 1999
  • This study was conducted to improve the functional properties of soybean protein isolate by dimethylglutarylation and acetylation. Amino acid composition and solubility of modified soybean protein by dimethylglutarylation were not changed, but lysine and trypsin inhibitor activity was decreased an isoelectric point was moved from pH5 to pH4 as a result of modification. Emulsification capacity and stability, foaming capacity and thermal stability were increased by the modification. In that 91% dimethylglutarylated protein did not coagulate when heating at $100^{\circ}C$ for 20 min. while its foaming stability was decreased. Whereas specific gravity was decreased by the modification of the soybean protein, relative viscosity and whiteness were improved. Generally, dimethylglutarylation produced more conformational changes in protein system than did in acetylation.

  • PDF

Stability and Interconversion of Acetylcholine Conformers

  • Lee, Jae Shin;Park, Young Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2911-2916
    • /
    • 2014
  • The gas phase structures, energetics, and interconversion pathways of five lowest energy conformers of acetylcholine were examined employing the B3LYP, MP2, and CCSD(T) methods in conjunction with diverse basis sets including the correlation consistent aug-cc-pVDZ and aug-cc-pVTZ basis sets. It is found that use of adequate basis set containing proper polarization and diffuse functions capable of describing the floppy potential energy surface of acetylcholine is important in correctly predicting the relative stability of these conformers. The interconversion pathways and barrier heights between these conformers were elucidated by examining the potential energy surface for torsional motion, which also manifested the presence of chiral conformations of acetylcholine corresponding to the original conformations. On the basis of high level electronic energy calculations and thermal contribution analysis, four lowest energy conformers appear to be populated in the energy range of less than 1 kcal/mol at room temperature.

The μ-synthesis and analysis of water level control in steam generators

  • Salehi, Ahmad;Kazemi, Mohammad Hosein;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.163-169
    • /
    • 2019
  • The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.

Effects of Fiscal Instability on Financial Instability

  • HWANG, SUNJOO
    • KDI Journal of Economic Policy
    • /
    • v.44 no.3
    • /
    • pp.49-74
    • /
    • 2022
  • This paper empirically examines how fiscal instability affects financial instability. According to an IMF forecast (2021a), the fiscal space in Korea will be steadily reduced in the future. The theoretical literature predicts that if fiscal stability is undermined, financial stability will also be in danger given that government guarantees on banks are weakened and/or sovereign bonds held in banks become riskier. This paper empirically finds the existence of this negative impact of fiscal instability on financial instability. I also find that the intensity of this fiscal-financial relationship is greater in a country where (i) its currency is not a reserve currency such as the US dollar or euro, (ii) its banking sector is large relative to government sector, and/or (iii) its private credit to GDP is high. Korea has all of these three characteristics and hence needs to put more effort into maintaining fiscal stability.

Heat Load Estimation-Based Switching Explicit Model Predictive Temperature Control for VRF Systems (시스템 에어컨의 온도 제어를 위한 부하 예측 기반 스위칭 모델 예측 제어)

  • Jun-Yeong Kim;S.M. Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.123-130
    • /
    • 2024
  • This paper proposes an EMPC (Explicit Model Predictive Controller) for temperature tracking control based on heat load prediction by an ESO (Extended State Observer) for a variable cooling circulation system with multiple indoor units connected to one outdoor unit. In this system, heat transfer and heat loss relative to the input temperature are modeled using system dynamics. Using this model, we design an EMPC based on an ESO that is robust to temperature changes and depends on airflow. To determine the stability of both the controller and the observer, asymptotic stability is verified through Lyapunov stability analysis. Finally, to validate the performance of the proposed controller, simulations are conducted under three scenarios with varying airflow, set temperature, and heat load.