• Title/Summary/Keyword: Relative Flow

Search Result 1,422, Processing Time 0.025 seconds

Analysis of Gradually Varied Flow Considering Relative Depth in Circular Pipe (원형관에서 상대수심을 고려한 점변류 해석)

  • Kim, Minhwan;Park, Junghee;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2007
  • When we use the circular pipes for wastewater and storm water, we should be known the characteristics of the flow for accurate design. To elevate the design accuracy, we want to know the profile of flow. The roughness coefficient in the Manning equation is constant, but in actuality changed with the relative depth in circular pipe. This study was conducted to calculate the relative normal depth in changing the roughness coefficient (named relative roughness coefficient) with the relative depth in the analysis of gradually varied flow in the circular pipe by Newton-Raphson method. We performed the analysis of gradually varied flow using the relative normal depth and the relative roughness coefficient. We presented the 12 flow profiles with the relative depth and the relative roughness coefficient in circular pipe. The flow classification considering relative depth in circular pipe is available to analyse gradually varied flow profiles.

The effect of position of propeller fan relative to duct inlet on flow characteristics (프로펠러 팬과 덕트와의 상대위치가 유동특성에 미치는 영향)

  • Sim, W.C.;Cho, K.R.;Joo, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 1997
  • The position of propeller fan from duct inlet is one of basic parameters for the design of propeller fan. To investigate the effect of its position on fan characteristics, the inlet flow fields and relative flow angles were measured by a 5-hole pitot tube. The experimental results indicate that the ratio of radial flow introduced from propeller circumference to total inlet flow increases with the increase of propeller distance from duct inlet. When fan operates without duct, the total flow rate and the radial flow ratio are higher than those of any other positions of propeller relative to duct inlet. The radial flow ratio decreases as a flow coefficient and the propeller distance decrease. Therefore the front flow fields can be adjusted in some extent by varying the propeller distance according to a fan loading. The inlet flow angles are decreasing a little as a rotational speed and the propeller distance decrease. In the present case it was judged that the deviation angle of outlet flow became negative owing to a flow separation near a trailing edge.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION (상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung Mun-Seung;Kwon Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW ANALYSIS (이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung M. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.135-139
    • /
    • 2005
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoil including relative motion. Validation were made by comparing the predicted results with those of experiments or other researcher's numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

  • PDF

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(II) Flow on Relative Stream Surface (유한체적법을 이용한 터보기계 회전차 내부의 천이음속.층류 유동해석(II) 상대유면 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.452-457
    • /
    • 1993
  • For the calculation of transonic laminar relative flow fields on the axisymmetric H-S and B-B stream surfaces in turbomachinery, a finite volume method developed in Part (I) is extended. Energy equation is replaced for simplicity by the condition of constant rothalpy throughout the flow fields. For axisymmetric H-S flow the circumferential componets of absolute velocity are given in advance so that this component of momentum equations can be neglected. Some numerical results show good agreement with experimental data.

Effect of Relative Humidity on the Breakthrough of Charcoal Tubes during Mixed Organic Vapor Sampling (혼합 유기용제 포집시 습도가 활성탄관의 파과에 미치는 영향)

  • Yang, Hyeok Syng;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.125-137
    • /
    • 1996
  • This study was designed to investigate effects of relative humidity on the breakthrough of charcoal tubes at a fixed vapor concentration and sampling time during mixed organic vapor sampling. A vapor generator was used to generate three different concentrations of mixed organic vapor and a stainless steel chamber was fabricated and utilized to maintain three different percentages of relative humidity while maintaining a constant temperature. The results were as follows; 1. At high relative humidity, breakthrough of mixed organic vapor occurred quickly at low vapor concentration than at high vapor concentration because of the reduced adsorption volume of charcoal tube due to humidity. 2. Breakthrough by competitive adsorption of vapors onto charcoal tube was observed at first from n-hexane having the lowest boiling point and highest vapor pressure among the three organic vapors investigated, followed by TCE. No breakthrough was observed from toluene under all experimental conditions. 3. For n-hexane, breakthrough was observed after 2 hours of sampling and breakthrough rates were increased as relative humidity increased. For TCE, breakthrough was found after 3 hours of sampling and breakthrough rates by sampling time were increased as vapor concentration increased. 4. The adsorbed amount of mixed organic vapor at breakthrough was shown to have statistically significant correlations with sampling time, relative humidity, and vapor concentration in descending order of correlation. Relative humidity and sampling time for n-hexane and sampling time and concentration for TCE were both statistically significantly correlated. 5. Relative humidity was found to affect the amount of breakthrough of mixed organic vapor and n-hexane. Among three percentages of relative humidity investigated, the amount of breakthrough at 85 % relative humidity was significantly larger than those of at lower percentages of relative humidity. No statistically significant difference was found between 25 % and 55 % relative humidity. 6. The results of multiple regression analysis between breakthrough and relative humidity, vapor concentrations showed that the coefficient of determination of mixed organic vapor was 0.263 and those of n-hexane and TCE were 0.275 and 0.189, respectively. 7. Flow rates of sampling pumps used were found to be affected by relative humidity present. At 25 %, 55 %, and 85 % relative humidity, the relative errors of sampling pump were 1.4 %, 13.4 %, and 18.6 %, respectively. In conclusion, the results of this study showed that high relative humidity could reduce the adsorption volume of charcoal tubes and subsequently increase breakthrough rates. Therefore, to prevent breakthrough when sampling mixed organic vapors, it is suggested that either sampling volume be reduced on the flow rate be lowered so as to minimize breakthrough of the most volatile organic vapor in the mixture. In addition, since the flow rates of a sampling pump can be adversely affected by high relative humidity, it is recommended to use a constant flow mode pump when sampling in the highly humid environment.

  • PDF

Numerical analysis of plasma effect on fluid flow in a supersonic flow (플라즈마에 의한 초음속 유동 변화 해석)

  • Park, Sul-Ki;Cho, Hyung-Hee;Song, Ji-Woon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.369-372
    • /
    • 2009
  • A numerical analysis of the effect of plasma on flow characteristics in supersonic flow is studied. It is shown that change of direction and velocity magnitude of flow is appeared different in relative direction of plasma and fluid flow. The case of that direction of electrons, which are same with flow direction, the flow is accelerated, and the case of opposition, the flow is decelerated.

  • PDF

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

Variations of Air Temperature, Relative Humidity and Pressure in a Low Pressure Chamber for Plant Growth (식물생장용 저압챔버 내의 기온, 상대습도 및 압력의 변화)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • This study was conducted to analyze the variations of air temperature, relative humidity and pressure in a low pressure chamber for plant growth. The low pressure chamber was composed of an acrylic cylinder, a stainless plate, a mass flow controller, an elastomer pressure controller, a read-out-box, a vacuum pump, and sensors of air temperature, relative humidity, and pressure. The pressure leakage in the low pressure chamber was greatly affected by the material and connection method of tubes. The leakage rate in the low pressure chamber with the welding of the stainless tubes and a plate decreased by $0.21kPa{\cdot}h^{-1}$, whereas the leakage in the low pressure chamber with teflon tube and rubber O-ring was given by $1.03kPa{\cdot}h^{-1}$. Pressure in the low pressure chamber was sensitively fluctuated by the air temperature inside the chamber. An elastomer pressure controller was installed to keep the pressure in the low pressure chamber at a setting value. However, inside relative humidity at dark period increased to saturation level.. Two levels (25 and 50kPa) of pressure and two levels (500 and 1,000sccm) of mass flow rate were provided to investigate the effect of low pressure and mass flow rate on relative humidity inside the chamber. It was concluded that low setting value of pressure and high mass flow rate of mixed gas were the effective methods to control the pressure and to suppress the excessive rise of relative humidity inside the chamber.