• Title/Summary/Keyword: Relative Distance Estimation

Search Result 92, Processing Time 0.029 seconds

Estimation of Relative Distance and Angle from the point trajectories in a mobile robot (특징점 궤적에 의한 자율이동로봇의 상대거리 및 각도 추정)

  • Hwang, Duk-In;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1231-1233
    • /
    • 1996
  • This paper presents an estimation of relative distance and angle from a mobile robot to an object. From the number of pulses required to make the mobile robot move to the feature point, we find the relative distance and angle between the mobile robot and the object. The proposed method shows a practical way of measuring the relative distance and angle between the mobile robot and an object without setting up real world coordinate system.

  • PDF

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

A Study on relative distance estimation for asynchronous FDD using Two-way ToA (비동기식 FDD에서 Two-way ToA를 통한 상대거리 측정에 관한 연구)

  • Song, Young-Hwan;Park, Jae-Soo;Shin, Young-Jun;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1175-1186
    • /
    • 2016
  • The relative distance estimation technique is important to Location-Based Service(: LBS) in a wireless communication environment. In this paper, we propose a scheme for measuring the relative distance by utilizing a frame structure of a physical layer in asynchronous Frequency Division Duplexing(: FDD) when the Internal and external infrastructure for position measurement cannot be used. The proposed method is suitable for continuous distance measurement. The test results showed that the proposed method has the accuracy of less than 10 meters on average.

A Relative Depth Estimation Algorithm Using Focus Measure (초점정보를 이용한 패턴간의 상대적 깊이 추정알고리즘 개발)

  • Jeong, Ji-Seok;Lee, Dae-Jong;Shin, Yong-Nyuo;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.527-532
    • /
    • 2013
  • Depth estimation is an essential factor for robot vision, 3D scene modeling, and motion control. The depth estimation method is based on focusing values calculated in a series of images by a single camera at different distance between lens and object. In this paper, we proposed a relative depth estimation method using focus measure. The proposed method is implemented by focus value calculated for each image obtained at different lens position and then depth is finally estimated by considering relative distance of two patterns. We performed various experiments on the effective focus measures for depth estimation by using various patterns and their usefulness.

Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying (확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정)

  • Lee, Young-Gu;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

A Study of Relative Location Estimation between Static Passive RFID Tag and Mobile Robot (정적 RFID 수동태그와 이동로봇의 상대위치인식에 대한 기법연구)

  • Moon W.S.;Ji Y.K.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.892-896
    • /
    • 2005
  • This paper presents method of depriving the relationship between static passive RFID tag and mobile robot In the field of tag-range. We use probabilistic sensor model of RFID reader by experiments. And we proposed estimation techniques by using direction of identification and relative-distance from the sensor model. Corresponding to distribution of identification, we can correct estimated tag position in relative coordinate. Simulation and Experimental Results show that the proposed method can provide good performance and thus be used fer mobile-robot localization.

  • PDF

A Relative Position Estimation System using Digital Beam Forming and ToA for Automatic Formation Flight of UAV (UAV 자동 편대비행을 위한 디지털 빔포밍 및 ToA 기반의 상대위치 추정 시스템)

  • Kim, Jae-Wan;Yoon, Jun-Yong;Joo, Yang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1092-1097
    • /
    • 2014
  • It is difficult to perform automatic formation flight of UAV (Unmanned Aerial vehicle) when GPS (Global Positionig System) is out of order or has a system error, since the relative position estimation in the flight group is impossible in that case. In this paper, we design a relative localization system for the automatic formation flight of UAV. For this purpose, we adopt digital beam forming (DBF) to estimate the angle with the central controller of the flight group and Particle Filtering scheme to compensate the estimation error of ToA (time of arrival) method. Computer simulation results present a proper distance between the central controller and a following unit to maintain the automatic formation flight.

Robust Relative Localization Using a Novel Modified Rounding Estimation Technique

  • Cho, Hyun-Jong;Kim, Won-Yeol;Joo, Yang-Ick;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • Accurate relative location estimation is a key requirement in indoor localization systems based on wireless sensor networks (WSNs). However, although these systems have applied not only various optimization algorithms but also fusion with sensors to achieve high accuracy in position determination, they are difficult to provide accurate relative azimuth and locations to users because of cumulative errors in inertial sensors with time and the influence of external magnetic fields. This paper based on ultra-wideband positioning system, which is relatively suitable for indoor localization compared to other wireless communications, presents an indoor localization system for estimating relative azimuth and location of location-unaware nodes, referred to as target nodes without applying any algorithms with complex variable and constraints to achieve high accuracy. In the proposed method, the target nodes comprising three mobile nodes estimate the relative distance and azimuth from two reference nodes that can be installed by users. In addition, in the process of estimating the relative localization information acquired from the reference nodes, positioning errors are minimized through a novel modified rounding estimation technique in which Kalman filter is applied without any time consumption algorithms. Experimental results show the feasibility and validity of the proposed system.

Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

  • Oh, Hyungjik;Park, Han-Earl;Lee, Kwangwon;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

Ultrawideband coupled relative positioning algorithm applicable to flight controller for multidrone collaboration

  • Jeonggi Yang;Soojeon Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.758-767
    • /
    • 2023
  • In this study, we introduce a loosely coupled relative position estimation method that utilizes a decentralized ultrawideband (UWB), Global Navigation Support System and inertial navigation system for flight controllers (FCs). Key obstacles to multidrone collaboration include relative position errors and the absence of communication devices. To address this, we provide an extended Kalman filter-based algorithm and module that correct distance errors by fusing UWB data acquired through random communications. Via simulations, we confirm the feasibility of the algorithm and verify its distance error correction performance according to the amount of communications. Real-world tests confirm the algorithm's effectiveness on FCs and the potential for multidrone collaboration in real environments. This method can be used to correct relative multidrone positions during collaborative transportation and simultaneous localization and mapping applications.