• Title/Summary/Keyword: Relative Distance

Search Result 1,032, Processing Time 0.024 seconds

A Study on the Relative Distance in Taking Action to Avoid Ship`s Collision (선박충돌회피를 위한 피항개시거리에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.99-105
    • /
    • 1983
  • In the Steering and Sailing Rules of International Regulations for Preventing Collicions at Sea, 1972, any relative distance between two vessels necessary for taking action to avoid collision in head-on situation is not referred. In this paper, the author analyzed the ship's collision avoiding actions from a viewpoint of ship motions and worked out mathematical formulas to calculate the relative distances necessary for collision avoiding actions. Figuring out the values of maneuvering indices through experiments of actual ships, the author applied these values to the calculationg formulas and calculated the minimum safe relative distances. On the assumption that two vessels same in size and condition are approaching each other in head-on situation, the minimum safe relative distance was calculated as 5.0 times, sufficient safe relative one as 10.0 times their own length.

  • PDF

Shape Description and Recognition Using the Relative Distance-Curvature Feature Space (상대거리-곡률 특징 공간을 이용한 형태 기술 및 인식)

  • Kim Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.527-534
    • /
    • 2005
  • Rotation and scale variations make it difficult to solve the problem of shape description and recognition because these variations change the location of points composing the shape. However, some geometric Invariant points and the relations among them are not changed by these variations. Therefore, if points in image space depicted with the r-y coordinates system can be transformed into a new coordinates system that are invariant to rotation and scale, the problem of shape description and recognition becomes easier. This paper presents a shape description method via transformation from the image space into the invariant feature space having two axes: representing relative distance from a centroid and contour segment curvature(CSC). The relative distance describes how far a point departs from the centroid, and the CSC represents the degree of fluctuation in a contour segment. After transformation, mesh features were used to describe the shape mapped onto the feature space. Experimental results show that the proposed method is robust to rotation and scale variations.

Effects of support feet on active feet during Y-Balance Test (Y-Balance Test 시 지지발이 활동발에 미치는 영향)

  • Byung-Hoon Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1249-1258
    • /
    • 2023
  • The purpose of this study was to reveal the effect of COP variable of support feet on relative reach distance and composite score of active feet during YBT. 29 adults in their 20s(age: 24.4±3.0 yrs, height: 171.0±10.5 cm, weight: 72.1±12.1 kg, leg length: 88.2±5.8 cm) participated in the study. Using YBT, relative reach distance and composite score of active feet were calculated, and COP variables of support feet were measured on left and right support feet. Multiple regression analysis was used to determine the effect of COP variables of support feet during YBT on relative reach distance and composite score. As a result of the study, during YBT, when supporting right feet, the influence of AP COP velocity, ML COP velocity and COP velocity in posterolateral direction was significant, and when supporting left feet, the influence of AP COP velocity, ML COP velocity in posteromedial direction improved relative reach distance and composite score.

An analysis on the factors responsible for relative position of interproximal papilla in healthy subjects

  • Kim, Joo-Hee;Cho, Yun-Jung;Lee, Ju-Youn;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.160-167
    • /
    • 2013
  • Purpose: This study examined the factors that can be associated with the appearance of the interproximal papilla. Methods: One hundred and forty-seven healthy interproximal papillae between the maxillary central incisors were examined. For each subject, a digital photograph and periapical radiograph of the interdental embrasure were taken using a 1-mm grid metal piece. The following parameters were recorded: the amount of recession of the interproximal papilla, contact point-bone crest distance, contact point-cemento-enamel junction (CEJ) distance, CEJ-bone crest distance, inter-radicular distance, tooth shape, embrasure space size, interproximal contact area, gingival biotype, papilla height, and papilla tip form. Results: The amount of recession of the interproximal papilla was associated with the following: 1) increase in contact point-bone crest, contact point-CEJ, and CEJ-bone crest distance; 2) increase in the inter-radicular distance; 3) triangular tooth shape; 4) decrease in the interproximal contact area length; 5) increase in the embrasure space size; and 6) flat papilla tip form. On the other hand, the amount of gingival recession was not associated with the gingival biotype or papilla height. In the triangular tooth shape, the contact point-bone crest distance and inter-radicular distance were longer, the interproximal contact area length was shorter, and the embrasure space size was larger. The papilla tip form became flatter with increasing inter-radicular distance and CEJ-bone crest distance. Conclusions: The relative position of the interproximal papilla in healthy subjects was associated with the multiple factors and each factor was related to the others. A triangular tooth shape carries a higher risk of recession of the interproximal papilla because the proximal contact point is positioned more incisally and the bone crest is positioned more apically. This results in an increase in recession of the interproximal papilla and flat papilla tip form.

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements

  • Kang, Dae-Eun;Park, Sang-Young;Son, Jihae
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.

Moving obstacle avoidance of a robot using avoidability measure (충돌 회피 가능도를 이용한 로봇의 이동 장애물 회피)

  • Ko, Nak-Yong;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.169-178
    • /
    • 1997
  • This paper presents a new solution approach to moving obstacle avoidance problem of a robot. A new concept, avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of three state variables: the distance from the obstacle to the robot, outward speed of the obstacle relative to the robot, and outward speed of the robot relative to the obstacle. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF, an artificial potential is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid a moving obstacle in real time. Since the algorithm considers the mobility of the obstacle and robot as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

A Study on Steady and Unsteady Behavior of Helium Jet in the Stationary Atmosphere (헬륨 기체분류의 정상적 비정상적 거동에 관한 연구)

  • Kim, B.G.;Suh, Y.K.;Ha, J.Y.;Kwon, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.34-45
    • /
    • 1993
  • This study aims to analyze the mixing characteristics of hydrogen considered as a new fuel for internal combustion engines. As the physical property of helium gas is similar to that of hydrogen, helium gas was used in this study. To analyze the steady and unsteady behavior of jet, helium gas was injected into the stationary atmosphere at the normal temperature and pressure. Concentration of helium gas in the center of jet flow is in inverse proportion with axial distance from the nozzle tip. This agrees with the free jet theory of Schlichting. The relative equation for dimensionless concentration to radial/axial distance the axial distance of potential core region, the cone angle a of the jet flow and the relative equation for arriving distance of the front of jet flow to the lapse of time are obtained. But free jet theory of Schlichting in the dimensionless concentration is not in agreement with the present experimental results of the distance of the radial direction. It needs more study. When the arrival frequency of jet flow is used as a parameter, the transition area changing from unsteady flow area into steady flow area becomes gradually wider downstream, but its ratio for the whole unsteady flow area gradually decreases.

  • PDF

The Quantitative Analysis on the Criterion Elements for Collision Avoidance Action in Collision Avoidance maneuver and Its Application (피항조선시의 피항개시기준요소의 양적파악 및 그 이용에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 1999
  • The Steering and Sailing Rules of International Regulation for Preventing Collisions at Sea now in use direct actions to avoid collision when two power-driven vessels are meeting on reciprocal or nearly reciprocal courses so as to involve risk of collision. But these rules do not refer to the minimum relative distances and safety relative distances between two vessels when they should take such actions.In this paper the ship's collision avoiding actions being analyzed from a viewpoint of ship motions, the mathematical formulas to calculate such relative distances necessary for taking actions to avoid collision were worked out. The values of maneuvering indices being figured out through experiments of 20 actual ships of small, medium, large and mammoth size and applied to calculating formulas, the minimum relative distances and safety relative distances were calculated. The main results were as follows. 1. It was confirmed that the criterion elements for collision avoiding actions in head-on situation of two vessels shall be the minimum relative distances and safety relative distances between them. 2. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the minimum relative distance of small vessel(GT : 160~650tons) was found to be about 4.7 times her own length, and those of medium (GT:2,300~4,500tons),large(GT:15,000~62,000tons) and mommoth (GT:91,000~194,000tons) vessels were found to be about 5.2 times, about 5.2 times and about 6.1 times their own lengths respectively. 3. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the safe relative distance of small vessel (GT : 160~650tons) was found to be about 6.8 times her own length, and those of medium (GT : 2,300~4,500tons), large (GT: 15,000~62,000tons) and mammoth (GT : 91,000~194,000tons) vessels were found to be about 9.0 times, about 6.3 times, and about 8.0 times their own lengths respectively. 4. It is considered to be helpful for the safety of ship handling that the sufficient safe relative distances for every vessels shall be more than about 12~14 times which are 2 times minimum relative distance, their own length on above assumption.

  • PDF

Creepage Distance Measurement Using Binocular Stereo Vision on Hot-line for High Voltage Insulator

  • He, Wenjun;Wang, Jiake;Fu, Yuegang
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.348-355
    • /
    • 2018
  • How to measure the creepage distance of an insulator quickly and accurately is a problem for the power industry at present, and the noticeable concern is that the high voltage insulation equipment cannot be measured online in the charged state. In view of this situation, we develop an on-line measurement system of creepage distance for high voltage insulators based on binocular stereo vision. We have proposed a method of generating linear structured light using a conical off-axis mirror. The feasibility and effect of two ways to solve the interference problem of strong sunlight have been discussed, one way is to use bandpass filters to enhance the contrast ratio of linear structured light in the images, and the other way is to process the images with adaptive threshold segmentation and feature point extraction. After the system is calibrated, we tested the measurement error of the on-line measurement system with a composite insulator sample. Experimental results show that the maximum relative error is 1.45% and the average relative error is 0.69%, which satisfies the task requirement of not more than 5% of the maximum relative error.

A Study on the Catching Selectivity of the Ark Shell(Scapharca Broughtonii)Dredge (피조개 항망의 어획선택성에 관한 연구)

  • 조봉곤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.366-376
    • /
    • 1999
  • In order to examine the catching selectivity of the ark shell(Scapharca broughtonii) dredge, the various factors affecting the selective action of the dredge are analyzed, and the probabilities of the ark shell not shifting through the gaps between the teeth, and the mesh of the netting bag, are calculated for the various shell lengths, using the relation between the posture and the length when the shell passes through these parts.Considering that the probability of making catch is the product of the both probabilities described above, and that this probability is proportional to the relative catching efficiency, the selectivity curves for the ark shell dredge were estimated for various gaps between the teeth and for the various mesh sizes of the netting bag. The obtained results are summarized as follows :1. The ratios of the shell length of ark shell to the distance between teeth indicating the relative catching efficiency of 0%, 50, 100% respectively were 1.0, 1.26~1.28, 1.47~1.44, and that the selection ranges of selective shell length by the distance between teeth were 0.47~0.44, where the distances between teeth were 3.2cm, 3.6cm, 4.0cm, 4.4cm and 4.8cm. 2. The ratios of the shell length of ark shell to the mesh size indicating the relative catching efficiency of 0%, 50%, 100% respectively were 0.67, 0.84, 0.97 and that the selection range of shell length for catching, that in the range of selective shell length by the mesh size was 0.31, where the distance of 4.0cm between teeth, mesh size of 6.0 cm and the smaller mesh angle of $60^{\circ}$3. Where the distance between teeth is 4.0 cm and the smaller mesh angle is $60^{\circ}$, the selection range of shell length for catching of the ark shell dredge is decreased according to the mesh size, and it is minimized by 0.20 in the mesh size of 9.0~10.0 cm, but increased in the mesh size of over 11.0 cm. 4. Where the distance between teeth is 4.0 cm, the selective action by the mesh size of netting bag is begun with the mesh size of over 10.0 cm.

  • PDF