• 제목/요약/키워드: Relationship matrix

검색결과 749건 처리시간 0.032초

A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion

  • Ranjbarnia, Masoud;Rahimpour, Nima;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.11-23
    • /
    • 2020
  • In this study, a new analytical-numerical procedure is developed to give the stresses and strains around a circular tunnel in rock masses exhibiting different stress-strain behavior. The calculation starts from the tunnel wall and continues toward the unknown elastic-plastic boundary by a finite difference method in the annular discretized plastic zone. From the known stresses in the tunnel boundary, the strains are calculated using the elastic-plastic stiffness matrix in which three dimensional Hoek-Brown failure criterion (Jiang and Zhao 2015) and Mohr-Coulomb potential function with proper dilation angle (i.e., non-associated flow rule) are employed in terms of stress invariants. The illustrative examples give ground response curve and show correctness of the proposed approach. Finally, from the results of a great number of analyses, a simple relationship is presented to find out the closure of circular tunnel in terms of rock mass strength and tunnel depth. It can be valuable for the preliminary decision of tunnel support and for prediction of tunnel problems.

고차 큐뮬런트를 이용한 FIR 시스템의 회귀 추정 알고리듬 (A Recursive Estimation Algorithm for FIR System Using Higher Order Cumulants)

  • 김형일;양태원;전범기;성굉모
    • 한국음향학회지
    • /
    • 제16권3호
    • /
    • pp.81-85
    • /
    • 1997
  • 본 논문에서는 3차와 4와의 큐뮬런트를 이용하여 FIR 시스템의 파라메터 추정을 위한 회귀 추정 알고리듬을 제안한다. 제안한 FIR 파라메터 회귀 추정 알고리듬에서 3차와 4차의 큐뮬런트 관계식으로부터 Overdetermined Recurisive Instrumental Variable (ORIV) 형태의 회귀 추정 알고리듬으로 변환할 수 있도록 출력신호로 구성된 행렬식을 얻어낸 후, 이를 전개하여 회귀 추정 알고리듬을 개발한다. 제안한 회귀 추정 알고리듬은 기존의 비회귀 알고리듬의 확장으로 적은 데이터로 수렴이 가능하며, 시변 시스템의 추정에도 용이하다. 또한 3차와 4차의 순수 고차 큐뮬런트로 구성됨에 따라 기존의 2차의 자기상관함수를 이용한 회귀 추정 알고리듬에 비해 가산 가우시안 잡음에 의한 추정 오차를 줄일 수 있는 장점이 있다.

  • PDF

Exploring the Usage of the DEMATEL Method to Analyze the Causal Relations Between the Factors Facilitating Organizational Learning and Knowledge Creation in the Ministry of Education

  • Park, Sun Hyung;Kim, Il Soo;Lim, Seong Bum
    • International Journal of Contents
    • /
    • 제12권4호
    • /
    • pp.31-44
    • /
    • 2016
  • Knowledge creation and management are regarded as critical success factors for an organization's survival in the knowledge era. As a process of knowledge acquisition and sharing, organizational learning mechanisms (OLMs) guide the learning function of organizations represented by its different learning activities. We examined a variety of learning processes that constitute OLMs. In this study, we aimed to capture the process and framework of OLMs and knowledge sharing and acquisition. Factors facilitating OLMs were investigated at three levels: individual, group, and organizational. The concept of an OLM has received some attention in the field of organizational learning, however, the relationship among the factors generating OLMs has not been empirically tested. As part of the ongoing discussion, we attempted a systemic approach for OLMs. OLMs can be represented by factors that are inherent to the organization's system; therefore, prior to empirically testing the OLM generating factor(s), evaluation of its organizational integration is required to determine effective treatment of each factor. Thus, we developed a framework to manage knowledge and proposed a method to numerically evaluate factors influencing the OLMs. Specifically, composite importance (CI) of the Decision-Making Trial and Evaluation Laboratory (DEMATEL) method was applied to explore the interaction effect of these factors based on systemic approach. The augmented matrix thus generated is expected to serve as a stochastic matrix of an absorbing Markov chain.

EFFICIENT IHS BASED IMAGE FUSION WITH 'COMPENSATIVE' MATRIX CONSTRUCTED BY SIMULATING THE SCALING PROCESS

  • Nguyen, TienCuong;Kim, Dae-Sung;Kim, Yong-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.639-642
    • /
    • 2006
  • The intensity-hue-saturation (IHS) technique has become a standard procedure in image analysis. It enhances the colour of highly correlated data. Unfortunately, IHS technique is sensitive to the properties of the analyzed area and usually faces colour distortion problems in the fused process. This paper explores the relationship of colour between before and after the fused process and the change in colour space of images. Subsequently, the fused colours are transformed back into the 'simulative' true colours by the following steps: (1) For each pixel of fused image that match with original pixel (of the coarse spectral resolution image) is transformed back to the true colour of original pixel. (2) The value for interpolating pixels is compensated to preserve the DN ratio between the original pixel and it's vicinity. The 'compensative matrix' is constructed by the DN of fused images and simulation of scaling process. An illustrative example of a Landsat and SPOT fused image also demonstrates the simulative true colour fusion methods.

  • PDF

Improved Wideband Precoding with Arbitrary Subcarrier Grouping in MIMO-OFDM Systems

  • Long, Hang;Kim, Kyeong-Jin;Xiang, Wei;Shen, Shanshan;Zheng, Kan;Wang, Wenbo
    • ETRI Journal
    • /
    • 제34권1호
    • /
    • pp.9-16
    • /
    • 2012
  • Precoding in the multiple-input multiple-output orthogonal frequency division multiplexing system is investigated. In conventional wideband precoding (WBP), only one precoder, obtained from the decomposition of the subcarrier independent channel matrix, is used for all subcarriers. With an investigation of the relationship between the subcarrier independent channel matrix and the temporal/frequency channels, an improved WBP scheme is proposed for practical scenarios in which a part of subcarriers are allocated to a user. The improved WBP scheme is a generalized scheme of which narrow-band precoding and conventional WBP schemes are special modes. Simulation results demonstrate that the improved WBP scheme almost achieves the optimum performance of a single precoder and outperforms the conventional WBP scheme in terms of the bit error ratio and ergodic capacity with slight complexity increase. The largest advantage of the improved WBP scheme on signal-to-noise ratio in simulation results is over 2.1 dB.

세라믹 매트릭스 버너에 형성된 예혼합 화염의 NOx 및 CO 배출특성 (Nitric Oxide and Carbon Monoxide Emission from a Premixed Flame Stabilized in a Porous Ceramic Matrix Burner)

  • 정종수;이교우
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3243-3250
    • /
    • 1996
  • Emission characteristics of nitric oxides and carbon monoxide from a porous media combustor has been experiment studied. The relationship between the change of flame shape and emission has also been examined. As the equivalence ratio decreases, the flame shape on the ceramic matrix plate changes from a diffusion flame, R(radiant)-type flame, to B(Blue)-type flame. With large fuel flow rate, R-type flame turns to be two dimensional R-II type flame around the equivalence of 0.7. Carbon monoxide emission increases very rapid with decreasing equivalence ratio. It changes a lot from some 10 ppm to 100-10,000 ppm with the change of flame type from R-I to R-II type. Nitric oxide emission from the premixed burner is less than 25 ppm over all range of fuel flow rate, which is less than 20% of NOx emission from conventional gas burners.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

고속 화염 용사를 통하여 형성된 다중벽 탄소 나노튜브 알루미늄 복합소재 코팅의 특성 평가 (Property Evaluation of HVOF Sprayed Multi-walled Carbon Nanotube Aluminum Composite Coatings)

  • 강기철;박형권;이창희
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Multi-walled carbon nanotube (MWCNT) aluminum composite powders were deposited to form coatings using a high velocity oxygen fuel (HVOF) spraying process. High thermal energy and contact with atmospheric oxygen were supplied as the MWCNT aluminum composite particles were exposed to a gas flow field at high temperature (${\sim}3.0{\times}10^3$ K) during HVOF spraying. As a result, the particles underwent full or partial melting and rapid solidification due to the high thermal energy, and the exposure to oxygen induced the interfacial reaction of MWCNTs within the particle. The electrical and mechanical properties of MWCNT aluminum composite coatings were evaluated based on microstructure analysis. Electrical resistivity, elastic modulus, and micro-hardness, of the MWCNT aluminum composite coatings were higher than those of pure aluminum coating. The contribution of MWCNTs to the aluminum matrix can be attributed to their high electrical conductivity, dispersion hardening and anchoring effects. The relationship among the properties and the interaction of the MWCNTs with the aluminum matrix is discussed.

상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정 (Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records)

  • Kim Jae Min;Feng. M. Q.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과 (Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite)

  • 이진경;박영철;이규창;이상필;조윤호;이준현
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.