• Title/Summary/Keyword: Relational Mechanism

Search Result 76, Processing Time 0.027 seconds

Emergence of Inter-organizational Collaboration Networks : Relational Capability Perspective (기업 간 협업 네트워크의 창발 : 관계 역량을 중심으로)

  • Park, Chulsoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.1-18
    • /
    • 2015
  • This paper proposes relational capability as a main driver of constructing inter-organizational collaboration networks. Based on social network theory and relational view literature, three components of relational capability are constructed and implemented by an agent-based model. The components include organizational capability, structural capability, and trust between a partner and a focal firm. These three components are updated by two micro mechanisms: structural mechanism and relational mechanism. Structural mechanism is a feedback loop in which the relational capability increases structural capability and vice versa. Relational mechanism is a learning-by-doing process in which a focal firm experiences success or failure of collaboration and the experience increases or decreases cumulative trust in a partner firm. Result of agent-based simulation shows that a collaboration network emerges through interactions of firm's relational capabilities and the characteristics of emerged networks vary with the contribution of structural capability and trust to relational capability. Specifically, in case structural capability contributes more to relational capability, the average degree centrality and collaboration proportion increases as time passes and enters into an equilibrium state. In that case, almost every firms participated in the network collaborates each other so that the emerged network becomes highly cohesive. In case trust contributes more to relational capability, the results are reversed. In an equilibrium state, the balance of contribution between structural capability and trust makes an emerged network larger and maximizes average degree centrality of the network.

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

Data Mining and FNN-Driven Knowledge Acquisition and Inference Mechanism for Developing A Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.99-104
    • /
    • 2003
  • In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.

  • PDF

Governance Mechanisms and Opportunism in Inter-firm Relational Exchanges

  • Kim, Sang-Hyun
    • Journal of Distribution Science
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2014
  • Purpose - The general objective of this study is to explain the governance mechanisms of relational exchanges by considering both economic and relational factors. As regards the relationship between opportunism and governance mechanisms, opportunism was hypothesized as being positively related to the use of the authority mechanism, and negatively related with use of the trust mechanism. Research design, data, and methodology - Purchasing relationships between original equipment manufacturers (OEMs) and their component suppliers were chosen as the empirical setting. Purchasing specialists in each company, who interact regularly with suppliers and have the major responsibility for managing the exchange relationships with suppliers, were used as the respondents for this study. A mail survey methodology was employed to collect data in the final field survey. Results - As predicted, opportunistic behavior is found to be negatively related to the use of the trust mechanism and positively related to the use of the authority mechanism. Therefore, the result supports the proposed hypotheses. Conclusions - By integrating research streams, this study contributes to the marketing discipline by improving our understanding of when and why different mixtures of governance mechanisms are used.

Comparative Study on the Selection Algorithm of CLINAID using Fuzzy Relational Products

  • Noe, Chan-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.849-855
    • /
    • 2008
  • The Diagnostic Unit of CLINAID can infer working diagnoses for general diseases from the information provided by a user. This user-provided information in the form of signs and symptoms, however, is usually not sufficient to make a final decision on a working diagnosis. In order for the Diagnostic Unit to reach a diagnostic conclusion, it needs to select suitable clinical investigations for the patients. Because different investigations can be selected for the same patient, we need a process that can optimize the selection procedure employed by the Diagnostic Unit. This process, called a selection algorithm, must work with the fuzzy relational method because CLINAID uses fuzzy relational structures extensively for its knowledge bases and inference mechanism. In this paper we present steps of the selection algorithm along with simulation results on this algorithm using fuzzy relational products, both harsh product and mean product. The computation results of applying several different fuzzy implication operators are compared and analyzed.

A Securing Method of Relational Mechanism Between Networking Technology and Security Technology (네트워킹기능과 정보보호기능 연동기술 메커니즘 구현)

  • Noh, Si-Choon;Na, Sang-Yeob
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • This paper related to implementing issue and performance measuring about blended mechanism between networking technology and security technology. We got more effectiveness in overall network security, when applying and composing amalgamated security mechanism between network technology and security technology. The blended method offers $8{\sim}10%$ effective result in network security than the isolated ways of applying relational two technologies. As a result, we suggest amalgamated security mechanism between network technology and security technology, and also, we propose the blended method as a model of more effective way.

  • PDF

Development of Expert Systems based on Dynamic Knowledge Map and DBMS (동적지식도와 데이터베이스관리시스템 기반의 전문가시스템 개발)

  • Jin Sung, Kim
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.568-571
    • /
    • 2004
  • In this study, we propose an efficient expert system (ES) construction mechanism by using dynamic knowledge map (DKM) and database management systems (DBMS). Generally, traditional ES and ES developing tools has some limitations such as, 1) a lot of time to extend the knowledge base (KB), 2) too difficult to change the inference path, 3) inflexible use of inference functions and operators. First, to overcome these limitations, we use DKM in extracting the complex relationships and causal rules from human expert and other knowledge resources. Then, elation database (RDB) and its management systems will help to transform the relationships from diagram to relational table. Therefore, our mechanism can help the ES or KBS (Knowledge-Based Systems) developers in several ways efficiently. In the experiment section, we used medical data to show the efficiency of our mechanism. Experimental results with various disease show that the mechanism is superior in terms of extension ability and flexible inference.

  • PDF

Relational Logic Definition of Articles and Sentences in Korean Building Code for the Automated Building Permit System (인허가관련 설계품질검토 자동화를 위한 건축법규 문장 관계논리에 관한 연구)

  • Kim, Hyunjung;Lee, Jin-Kook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.433-442
    • /
    • 2016
  • This paper aims to define the relational logic of in-between code articles as well as within atomic sentences in Korean Building Code, as an intermediate research and development process for the automated building permit system of Korea. The approach depicted in this paper enables the software developers to figure out the logical relations in order to compose KBimCode and its databases. KBimCode is a computer-readable form of Korean Building Code sentences based on a logic rule-based mechanism. Two types of relational logic definition are described in this paper. First type is a logic definition of relation between code sentences. Due to the complexity of Korean Building code structure that consists of decree, regulation or ordinance, an intensive analysis of sentence relations has been performed. Code sentences have a relation based on delegation or reference each other. Another type is a relational logic definition in a code sentence based on translated atomic sentence(TAS) which is an explicit form of atomic sentence(AS). The analysis has been performed because the natural language has intrinsic ambiguity which hinders interpreting embedded meaning of Building Code. Thus, both analyses have been conducted for capturing accurate meaning of building permit-related requirements as a part of the logic rule-based mechanism.

A Development of Forward Inference Engine and Expert Systems based on Relational Database and SQL

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.49-52
    • /
    • 2003
  • In this research, we propose a mechanism to develop an inference engine and expert systems based on relational database and SQL (structured query language). Generally, former researchers had tried to develop an expert systems based on text-oriented knowledge base and backward/forward (chaining) inference engine. In these researches, however, the speed of inference was remained as a tackling point in the development of agile expert systems. Especially, the forward inference needs more times than backward inference. In addition, the size of knowledge base, complicate knowledge expression method, expansibility of knowledge base, and hierarchies among rules are the critical limitations to develop an expert systems. To overcome the limitations in speed of inference and expansibility of knowledge base, we proposed a relational database-oriented knowledge base and forward inference engine. Therefore, our proposed mechanism could manipulate the huge size of knowledge base efficiently, and inference with the large scaled knowledge base in a short time. To this purpose, we designed and developed an SQL-based forward inference engine using relational database. In the implementation process, we also developed a prototype expert system and presented a real-world validation data set collected from medical diagnosis field.

  • PDF