• Title/Summary/Keyword: Related keyword

Search Result 696, Processing Time 0.021 seconds

Digital Archives of Cultural Archetype Contents: Its Problems and Direction (디지털 아카이브즈의 문제점과 방향 - 문화원형 콘텐츠를 중심으로 -)

  • Hahm, Han-Hee;Park, Soon-Cheol
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.17 no.2
    • /
    • pp.23-42
    • /
    • 2006
  • This is a study of the digital archives of Culturecontent.com where 'Cultural Archetype Contents' are currently in service. One of the major purposes of our study is to point out problems in the current system and eventually propose improvements to the digital archives. The government launched a four-year project for developing the cultural archetype content sources and establishing its related business with the hope of enhancing the nation's competitiveness. More specifically, the project focuses on the production of source materials of cultural archetype contents in the subjects of Korea's history. tradition, everyday life. arts and general geographical books. In addition, through this project, the government also intends to establish a proper distribution system of digitalized culture contents and to control copyright issues. This paper analyzes the digital archives system that stores the culture content data that have been produced from 2002 to 2005 and evaluates the current system's weaknesses and strengths. The summary of our findings is as follows. First. the digital archives system does not contain a semantic search engine and therefore its full function is 1agged. Second, similar data is not classified into the same categories but into the different ones, thereby confusing and inconveniencing users. Users who want to find source materials could be disappointed by the current distributive system. Our paper suggests a better system of digital archives with text mining technology which consists of five significant intelligent process-keyword searches, summarization, clustering, classification and topic tracking. Our paper endeavors to develop the best technical environment for preserving and using culture contents data. With the new digitalized upgraded settings, users of culture contents data will discover a world of new knowledge. The technology we introduce in this paper will lead to the highest achievable digital intelligence through a new framework.

GenAI(Generative Artificial Intelligence) Technology Trend Analysis Using Bigkinds: ChatGPT Emergence and Startup Impact Assessment (빅카인즈를 활용한 GenAI(생성형 인공지능) 기술 동향 분석: ChatGPT 등장과 스타트업 영향 평가)

  • Lee, Hyun Ju;Sung, Chang Soo;Jeon, Byung Hoon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.65-76
    • /
    • 2023
  • In the field of technology entrepreneurship and startups, the development of Artificial Intelligence(AI) has emerged as a key topic for business model innovation. As a result, venture firms are making various efforts centered on AI to secure competitiveness(Kim & Geum, 2023). The purpose of this study is to analyze the relationship between the development of GenAI technology and the startup ecosystem by analyzing domestic news articles to identify trends in the technology startup field. Using BIG Kinds, this study examined the changes in GenAI-related news articles, major issues, and trends in Korean news articles from 1990 to August 10, 2023, focusing on the emergence of ChatGPT before and after, and visualized the relevance through network analysis and keyword visualization. The results of the study showed that the mention of GenAI gradually increased in the articles from 2017 to 2023. In particular, OpenAI's ChatGPT service based on GPT-3.5 was highlighted as a major issue, indicating the popularization of language model-based GenAI technologies such as OpenAI's DALL-E, Google's MusicLM, and VoyagerX's Vrew. This proves the usefulness of GenAI in various fields, and since the launch of ChatGPT, Korean companies have been actively developing Korean language models. Startups such as Ritten Technologies are also utilizing GenAI to expand their scope in the technology startup field. This study confirms the connection between GenAI technology and startup entrepreneurship activities, which suggests that it can support the construction of innovative business strategies, and is expected to continue to shape the development of GenAI technology and the growth of the startup ecosystem. Further research is needed to explore international trends, the utilization of various analysis methods, and the possibility of applying GenAI in the real world. These efforts are expected to contribute to the development of GenAI technology and the growth of the startup ecosystem.

  • PDF

Categorization of Factors Causing the Framing Effect and Analysis of the 2015 Revised Curriculum Science Textbooks: Focusing on Risk Expressions (틀효과 발생 요인 범주화 및 2015 개정 교육과정 과학과 교과서 분석 -위험 표현을 중심으로-)

  • Hyeonju Lee;Minchul Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.5
    • /
    • pp.391-404
    • /
    • 2024
  • The development of science and technology brings abundance and convenience to human life, but it also brings risks. The risks caused by science and technology are universal and far-reaching, affecting the lives of humans, and they are living in an uncertain VUCA era where humans cannot predict when and where they will encounter risks. In order to respond to these risks, it is necessary to increase the level of citizens' risk awareness through risk education. It is necessary to discuss the role of science education in helping citizens to judge and respond to risks scientifically and objectively. On the other hand, in the process of judging and assessing risks, citizens are affected by the frames and ways in which risk information is expressed, a phenomenon known as the "Framing Effect". In this study, we categorized the factors that cause the framing effect, and based on the categorization, we compared and analyzed the frames of risk expression presented in the 2015 revised curriculum science textbooks. For this purpose, we categorized the factors that cause the framing effect by looking at papers published in KCI and SSCI journals with keywords "Framing Effect", and extracted the risk expression texts in textbooks and analyzed them according to the categories. We were able to derive eight factors causing framing effect and categorize the relationship between the factors in a 5x5 matrix. The differences in the frequency of risk expressions by subject in the 2015 revised science curriculum were related to the nature of the subject and the achievement standards, and the differences in the frequency of risk expressions could be identified by the categories of framing and presentation methods. This study is significant in that it examines the way risk is expressed by science subjects based on the factors that cause the framing effect and suggests the importance of the framing effect in risk education.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

The Effect of Users' Personality on Emotional and Cognitive Evaluation in UCC Web Site Usage (UCC(user-created-contents) 웹 사이트에서 사용자의 인성이 감정적, 인지적 평가와 UCC 활용에 미치는 영향)

  • Moon, Yun-Ji;Kang, So-Ra;Kim, Woo-Gon
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.167-190
    • /
    • 2010
  • The research conducted here focuses on the effect of factors that affect the behavior of UCC (User Created Content) website users, other than user's rational recognition of how useful a UCC website can be. Most discussions in the existing literature on information systems have focused on users' evaluation how a UCC website can help to attain the users' own goals. However, there are other factors and this research pays attention to an individual's 'personality,' which is stable and biological in nature. Specifically, I have noted here that 'extroversion' and 'neuroticism,' the two common personality factors presented in Eysenck's most representative 'EPQ Model' and 'Big Five Model,' are the two personality factors that affect a site's 'usefulness,' by this I mean how useful does the user consider the website and its content. How useful a site is considered by the user is the other factor that has been regarded as the antecedent factor that influences the adoption of information systems in the existing MIS (Management Information System) research. Secondly, as using or creating a UCC website does not guarantee the user's or the creator's extrinsic motivation, unlike when using the information system within an organization, there is a greater likelihood that the increase in user's activities in relation to a UCC website is motivated by emotional factors rather than rational factors. Thus, I have decided to include the relationship between an individual's personality and what they find pleasurable in the research model. Thirdly, when based on the S-O-R Paradigm of Mehrabian and Russell, the two cognitive factors and emotional factors are finally affected by stimulus, and thus these factors ultimately have an effect on an individual's respondent behavior. Therefore, this research has presented an assumption that the recognition of how useful the site and content is and what emotional pleasure it provides will finally affect the behavior of the UCC website users. Finally, the relationship between the recognition of how useful a site is and how pleasurable it is to useand UCC usage may differ depending on certain situational conditions. In other words, the relationship between the three factors may vary according to how much users are involved in the creation of the website content. Creation thus emerges as the keyword of UCC. I analyzed the above relationships through the moderating variable of the user's involvement in the creation of the site. The research result shows the following: When it comes to the relationship between an individual's personality and what they find pleasurable it is extroverted users who have a greater likelihood to feel pleasure when using a UCC website, as was expected in this research. This in turn leads to a more active usage of the UCC web site because a person who is an extrovert likes to spend time on activities with other people, is sensitive to new experiences and stimuli and thus actively responds to these. An extroverted person accepts new UCC activities as part of his/her social life, rather than getting away from this new UCC environment. This is represented by the term 'Foxonomy' where the users meet a variety of users from all over the world and contact new types of content created by these users. However, neuroticism creates the opposite situation to that created by extroversion. The representative symptoms of neuroticism are instability, stress, and tension. These dispositions are more closely related to stress caused by a new environment rather than this creatingcuriosity or pleasure. Thus, neurotic persons have an uneasy feeling and will eventually avoid the situation where their own or others' daily lives are frequently exposed to the open web environment, this eventually makes them have a negative attitude towards the web environment. When it comes to an individual's personality and how useful site is, the two personality factors of extroversion and neuroticism both have a positive relationship with the recognition of how useful the site and its content is. The positive, curious, and social dispositions of extroverted persons tend to make them consider the future usefulness and possibilities of a new type of information system, or website, based on their positive attitude, which has a significant influence on the recognition of how useful these UCC sites are. Neuroticism also favorably affects how useful a UCC website can be through a different mechanism from that of extroversion. As the neurotic persons tend to feel uneasy and have much doubt about a new type of information system, they actively explore its usefulness in order to relieve their uncomfortable feelings. In other words, neurotic persons seek out how useful a site can be in order to secure their own stable feelings. Meanwhile, extroverted persons explore how useful a site can be because of their positive attitude and curiosity. As a lot of MIS research has revealed that the recognition of how useful a site can be and how pleasurable it can be to use have been proven to have a significant effect on UCC activity. However, the relationship between these factors reveals different aspects based on the user's involvement in creation. This factor of creationgauges the interest of users in the creation of UCC contents. Involvement is a variable that shows the level of an individual's mental effort in creating UCC contents. When a user is highly involved in the creation process and makes an enormous effort to create UCC content (classed a part of a high-involvement group), their own pleasure and recognition of how useful the site is have a significantly higher effect on the future usage of the UCC contents, more significantly than the users who sit back and just retrieve the UCC content created by others. The cognitive and emotional response of those in the low-involvement group is unlikely to last long,even if they recognize the contents of a UCC website is pleasurable and useful to them. However, the high-involvement group tends to participate in the creation and the usage of UCC more favorably, connecting the experience with their own goals. In this respect, this research presents an answer to the question; why so many people are participating in the usage of UCC, the representative form of the Web 2.0 that has drastically involved more and more people in the creation of UCC, even if they cannot gain any monetary or social compensation. Neither information system nor a website can succeed unless it secures a certain level of user base. Moreover, it cannot be further developed when the reasons, or problems, for people's participation are not suitably explored, even if it has a certain user base. Thus, what is significant in this research is that it has studied users' respondent behavior based on an individual's innate personality, emotion, and cognitive interaction, unlike the existing research that has focused on 'compensation' to explain users' participation with the UCC website. There are also limitations in this research. Firstly, I divided an individual's personality into extroversion and neuroticism; however, there are many other personal factors such as neuro-psychiatricism, which also needs to be analyzed for its influence on UCC activities. Secondly, as a UCC website comes in many types such as multimedia, Wikis, and podcasting, these types need to be included as a sub-category of the UCC websites and their relationship with personality, emotion, cognition, and behavior also needs to be analyzed.