• Title/Summary/Keyword: Related keyword

Search Result 696, Processing Time 0.028 seconds

Study on Research Trends in Airline Industry using Keyword Network Analysis: Focused on the Journal Articles in Scopus (키워드 네트워크를 이용한 항공관련 글로벌 연구동향 분석: 스코퍼스(Scopus)게재 논문을 중심으로)

  • Lee, Ju-Yang;Jang, Phil-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.169-178
    • /
    • 2017
  • In various research fields, it is important to identify the trends and meaningful patterns in large volumes of text data. We examined the research trends and patterns in global journal articles related to aviation and airlines from 1997 to 2016 using keyword network analysis. Keyword network models were constructed, and centrality (degree and betweenness) analysis was performed using 25,959 articles from the Scopus database. The results suggested that the recent research trends in aviation and airlines could be quantitatively described through keyword network analysis. The engineering and social science fields were the most relevant fields with keywords related to aviation and airlines. In addition, it was shown that betweenness centrality increased with the degree centrality of keywords. The results of this study could be applied to establish policies and suggest further research topics in the field of aviation and airlines based on empirical data.

A study on academic articles of industry-academic cooperation through keyword network analysis (키워드 네트워크 분석을 통한 산학협력 학술논문 연구)

  • Kwon, Sun-hee
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.43-50
    • /
    • 2021
  • This paper aims to identify trends of domestic industry-academic cooperation through comparative analysis of domestic and overseas academic articles published over the past 10 years (2011-2021). To this end, keyword network analysis and topic modeling analysis were performed to identify the characteristics of the entire articles collected. As results, it turned out that domestic articles included school, employment, education, patent, and professor as a major keyword while for overseas articles, project, policy, innovation, and company were the main topics, and related keywords were found to be influential. These results suggest that domestic industry-academic cooperation would have been designed and led by universities focusing on education for employment, and need to be carried out more actively in the areas of 'research' and 'technology transfer with the government's related policies and support on establishing two-way relationships that can benefit both schools and participating companies.

Topic Modeling and Keyword Network Analysis of News Articles Related to Nurses before and after "the Thanks to You Challenge" during the COVID-19 Pandemic (COVID-19 '덕분에 챌린지' 전후 간호사 관련 뉴스 기사의 토픽 모델링 및 키워드 네트워크 분석)

  • Yun, Eun Kyoung;Kim, Jung Ok;Byun, Hye Min;Lee, Guk Geun
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.4
    • /
    • pp.442-453
    • /
    • 2021
  • Purpose: This study was conducted to assess public awareness and policy challenges faced by practicing nurses. Methods: After collecting nurse-related news articles published before and after 'the Thanks to You Challenge' campaign (between December 31, 2019, and July 15, 2020), keywords were extracted via preprocessing. A three-step method keyword analysis, latent Dirichlet allocation topic modeling, and keyword network analysis was used to examine the text and the structure of the selected news articles. Results: Top 30 keywords with similar occurrences were collected before and after the campaign. The five dominant topics before the campaign were: pandemic, infection of medical staff, local transmission, medical resources, and return of overseas Koreans. After the campaign, the topics 'infection of medical staff' and 'return of overseas Koreans' disappeared, but 'the Thanks to You Challenge' emerged as a dominant topic. A keyword network analysis revealed that the word of nurse was linked with keywords like thanks and campaign, through the word of sacrifice. These words formed interrelated domains of 'the Thanks to You Challenge' topic. Conclusion: The findings of this study can provide useful information for understanding various issues and social perspectives on COVID-19 nursing. The major themes of news reports lagged behind the real problems faced by nurses in COVID-19 crisis. While the press tends to focus on heroism and whole society, issues and policies mutually beneficial to public and nursing need to be further explored and enhanced by nurses.

A Study on the User Experience at Unmanned Cafe Using Big Data Analsis: Focus on text mining and semantic network analysis (빅데이터를 활용한 무인카페 소비자 인식에 관한 연구: 텍스트 마이닝과 의미연결망 분석을 중심으로)

  • Seung-Yeop Lee;Byeong-Hyeon Park;Jang-Hyeon Nam
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • Purpose - The purpose of this study was to investigate the perception of 'unmanned cafes' on the network through big data analysis, and to identify the latest trends in rapidly changing consumer perception. Based on this, I would like to suggest that it can be used as basic data for the revitalization of unmanned cafes and differentiated marketing strategies. Design/methodology/approach - This study collected documents containing unmanned cafe keywords for about three years, and the data collected using text mining techniques were analyzed using methods such as keyword frequency analysis, centrality analysis, and keyword network analysis. Findings - First, the top 10 words with a high frequency of appearance were identified in the order of unmanned cafes, unmanned cafes, start-up, operation, coffee, time, coffee machine, franchise, and robot cafes. Second, visualization of the semantic network confirmed that the key keyword "unmanned cafe" was at the center of the keyword cluster. Research implications or Originality - Using big data to collect and analyze keywords with high web visibility, we tried to identify new issues or trends in unmanned cafe recognition, which consists of keywords related to start-ups, mainly deals with topics related to start-ups when unmanned cafes are mentioned on the network.

A Study on analyzing brand character of myth material, relevant keyword and relevance with big data of portal site and SNS (포털사이트, SNS의 빅데이터를 이용한 신화소재의 브랜드 캐릭터와 연관어, 연관도 분석)

  • Oh, Sejong;Doo, Illchul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.157-169
    • /
    • 2015
  • In digital marketing, means of public relations and marketing of enterprises are changing into marketing techniques of predictive analytics. A significant study can be carried out by an analysis of 'the patterns of customers' uses' using big data on major portal sites and SNSs and their correlation with related keywords. This study analyzes the origins of mythological characters in major brands such as Nike, Hermes, Versace, Canon and Starbucks. Also, it extracts related keywords and relevance using big data on portal sites and SNS and their correlation. Nike marketing that reminds people of 'the goddess of victory, Nike' formed a good combination of the brand with relevance. Most of them are based on Greek mythology and have rich materials for storytelling and artistic values in common. Hopefully, this case analysis of foreign brands would become a starting point of discovering the materials of the domestic mythological characters.

A Knowledge Map Based on a Keyword-Relation Network by Using a Research Paper Database in the Computer Engineering Field (컴퓨터공학 분야 학술 논문 데이터베이스를 이용한 키워드 연관 네트워크 기반 지식지도)

  • Jung, Bo-Seok;Kwon, Yung-Keun;Kwak, Seung-Jin
    • The KIPS Transactions:PartD
    • /
    • v.18D no.6
    • /
    • pp.501-508
    • /
    • 2011
  • A knowledge map, which has been recently applied in various fields, is discovering characteristics hidden in a large amount of information and showing a tangible output to understand the meaning of the discovery. In this paper, we suggested a knowledge map for research trend analysis based on keyword-relation networks which are constructed by using a database of the domestic journal articles in the computer engineering field from 2000 through 2010. From that knowledge map, we could infer influential changes of a research topic related a specific keyword through examining the change of sizes of the connected components to which the keyword belongs in the keyword-relation networks. In addition, we observed that the size of the largest connected component in the keyword-relation networks is relatively small and groups of high-similarity keyword pairs are clustered in them by comparison with the random networks. This implies that the research field corresponding to the largest connected component is not so huge and many small-scale topics included in it are highly clustered and loosely-connected to each other. our proposed knowledge map can be considered as a approach for the research trend analysis while it is impossible to obtain those results by conventional approaches such as analyzing the frequency of an individual keyword.

Features of the Rural Revitalization Projects in Jang-su County Using LDA Topic Analysis of News Data - Focused on Keyword of Tourism and Livelihood - (뉴스데이터의 LDA 토픽 분석을 통한 장수군 농촌지역 활성화 사업의 특징 - 관광·생활 키워드를 중심으로 -)

  • Kim, Young-Jin;Son, Yong-hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.4
    • /
    • pp.69-80
    • /
    • 2018
  • In this study, we typified the project for revitalizing the rural area through text analysis using news data, and analyzed the main direction and characteristics of the project. In order to examine the factors emphasized among the issues related to the revitalization of rural areas, we used news data related to 'tourism' and 'livelihood', which are the main keyword of the project to promote rural areas. In the analysis, text mining techniques were used. Topic modeling was conducted on LDA techniques for major projects in 'tourism' and 'livelihood' keyword. Based on this, this study typified the projects that are carried out for the activation of rural areas by topic. As a result of the analysis, it was fount that the topics included in the project were distributed in 11 sub-types(Tourism Promotion, Regional Specialization, Local Festival, Development of Regional Scale, Urban and Rural Exchange, Agricultural Support, Community Forest Management, Improve the Settlement Environment, General Welfare Service, Low Class Support, Others). The characteristics of the rural revitalization projects were examined, and it was confirmed that domestic projects were carried out by tourism-oriented projects. To summarize, the government is making projects to revitalize rural areas through related ministries. Within the structure where the project is spreading to the region, a lot of projects are being carried out. It is understood that the tourism and welfare oriented projects are being carried out in the revitalization project of the domestic rural area. Therefore, in order to achieve the goal of rural revitalization, it is believed that it will be effective to carry out a balanced project to improve the settlement environment of the residents.

Research Trends on Defects of Apartment Building by Keyword Network Analysis (키워드 네트워크 분석을 이용한 공동주택 하자 연구 동향 분석)

  • Jang, Ho-myun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.403-410
    • /
    • 2017
  • Apartment housing has rapidly increased since the housing supply policy implemented in the late 1980s. However, various defects have occurred because the policy focused only on quantity supply, while neglected quality control. In addition, disputes related to various defects are increasing. ; accordingly, studies defects of apartment houses have been continuously conducted to solve various problems. In this study, I analyzed the research trends regarding long-term accumulated defects of apartment buildings by keyword network analysis, and suggest implications. As ananalysis method, I collected journal articles using the portal of the Korea Educational and Scientific Information Agency and constructed data analysis by filtering collected academic papers and keyword refinement. Ialso performed visualization modeling for keyword network relationships, connection degree centrality analysis, and mediation centrality analysis. The results revealed that Mortgage, Dispute, Repair, Case, Response, Condensation, Cost, Institution, Standard, and Valuation are the main keywords that characterize apartment housing defects.

Network Analysis of Green Technology using Keyword of Green Field (녹색 분야 키워드 정보를 이용한 녹색기술 분야 네트워크 분석 (2006년 이후 녹색기술 관련 정보를 중심으로))

  • Jeong, Dae-Hyun;Kwon, Oh-Jin;Kwon, Young-Il
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.511-518
    • /
    • 2012
  • In this study, the trend in green technology was observed and the domain of the green technology area that will be actively studied in the future was found by establishing knowledge map in green technology area and comparing and analyzing green technology information in Korea and overseas in time series. For the purpose of this study, network analysis was conducted for the keyword of green technology information provided by green technology information portal site (www.gtnet.go.kr) operated by Korea Institute of Science and Technology Information. Network analysis was conducted using keyword, and change of study subject was found by dividing the analysis result into periods. In the result of network analysis on top 100 keywords from total English keyword, it was found that renewable energy related areas such as solar energy and biomass had high centrality. When the main keyword trend by year was studied, centrality of solar cell, nanotechnology, smart grid, and fuel cell were found to increase, showing that research and development in generation and use of renewable energy are actively made.

Design of Multi-Purpose Preprocessor for Keyword Spotting and Continuous Language Support in Korean (한국어 핵심어 추출 및 연속 음성 인식을 위한 다목적 전처리 프로세서 설계)

  • Kim, Dong-Heon;Lee, Sang-Joon
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.225-236
    • /
    • 2013
  • The voice recognition has been made continuously. Now, this technology could support even natural language beyond recognition of isolated words. Interests for the voice recognition was boosting after the Siri, I-phone based voice recognition software, was presented in 2010. There are some occasions implemented voice enabled services using Korean voice recognition softwares, but their accuracy isn't accurate enough, because of background noise and lack of control on voice related features. In this paper, we propose a sort of multi-purpose preprocessor to improve this situation. This supports Keyword spotting in the continuous speech in addition to noise filtering function. This should be independent of any voice recognition software and it can extend its functionality to support continuous speech by additionally identifying the pre-predicate and the post-predicate in relative to the spotted keyword. We get validation about noise filter effectiveness, keyword recognition rate, continuous speech recognition rate by experiments.